scholarly journals Open-Source Automatic Segmentation of Ocular Structures and Biomarkers of Microbial Keratitis on Slit-Lamp Photography Images Using Deep Learning

2021 ◽  
Vol 25 (1) ◽  
pp. 88-99
Author(s):  
Jessica Loo ◽  
Matthias F. Kriegel ◽  
Megan M. Tuohy ◽  
Kyeong Hwan Kim ◽  
Venkatesh Prajna ◽  
...  
2021 ◽  
Vol 10 (12) ◽  
pp. 2
Author(s):  
Jessica Loo ◽  
Maria A. Woodward ◽  
Venkatesh Prajna ◽  
Matthias F. Kriegel ◽  
Mercy Pawar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jared Hamwood ◽  
Beat Schmutz ◽  
Michael J. Collins ◽  
Mark C. Allenby ◽  
David Alonso-Caneiro

AbstractThis paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-consuming nature of the segmentation of the orbital region in the human skull, it is often impractical to manually segment these images. Thus, the proposed method provides a valid clinical and research tool that performs similarly to the human observer.


2021 ◽  
Vol 11 (12) ◽  
pp. 5488
Author(s):  
Wei Ping Hsia ◽  
Siu Lun Tse ◽  
Chia Jen Chang ◽  
Yu Len Huang

The purpose of this article is to evaluate the accuracy of the optical coherence tomography (OCT) measurement of choroidal thickness in healthy eyes using a deep-learning method with the Mask R-CNN model. Thirty EDI-OCT of thirty patients were enrolled. A mask region-based convolutional neural network (Mask R-CNN) model composed of deep residual network (ResNet) and feature pyramid networks (FPNs) with standard convolution and fully connected heads for mask and box prediction, respectively, was used to automatically depict the choroid layer. The average choroidal thickness and subfoveal choroidal thickness were measured. The results of this study showed that ResNet 50 layers deep (R50) model and ResNet 101 layers deep (R101). R101 U R50 (OR model) demonstrated the best accuracy with an average error of 4.85 pixels and 4.86 pixels, respectively. The R101 ∩ R50 (AND model) took the least time with an average execution time of 4.6 s. Mask-RCNN models showed a good prediction rate of choroidal layer with accuracy rates of 90% and 89.9% for average choroidal thickness and average subfoveal choroidal thickness, respectively. In conclusion, the deep-learning method using the Mask-RCNN model provides a faster and accurate measurement of choroidal thickness. Comparing with manual delineation, it provides better effectiveness, which is feasible for clinical application and larger scale of research on choroid.


Author(s):  
Mr. Kiran Mudaraddi

The paper presents a deep learning-based methodology for detecting social distancing in order to assess the distance between people in order to mitigate the impact of the coronavirus pandemic. The input was a video frame from the camera, and the open-source object detection was pre-trained. The outcome demonstrates that the suggested method is capable of determining the social distancing measures between many participants in a video.


Sign in / Sign up

Export Citation Format

Share Document