Indoor measurement of UWB-IR propagation channel using time-gating techniques

Author(s):  
Poramate Chiochan ◽  
Myo Myint Maw ◽  
Sarun Duangsuwan ◽  
Sathaporn Promwong
2014 ◽  
Vol 35 (8) ◽  
pp. 2019-2023 ◽  
Author(s):  
Bao-lin Wei ◽  
Hong-wei Yue ◽  
Qian Zhou ◽  
Xue-ming Wei ◽  
Wei-lin Xu ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Irina Sirkova

AbstractThis work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.


2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Author(s):  
Zoubir Irahhauten ◽  
Alexander Yarovoy ◽  
Gerard J. M. Janssen ◽  
Homayoun Nikookar ◽  
Leo P. Ligthart

Sign in / Sign up

Export Citation Format

Share Document