A Highly Sensitive and Low-Cost Sagnac Loop Based Pressure Sensor

2013 ◽  
Vol 13 (8) ◽  
pp. 3073-3078 ◽  
Author(s):  
Lok-Hin Cho ◽  
Chuang Wu ◽  
Chao Lu ◽  
Hwa-Yaw Tam
Nanoscale ◽  
2015 ◽  
Vol 7 (35) ◽  
pp. 14766-14773 ◽  
Author(s):  
Yanlong Tai ◽  
Matthieu Mulle ◽  
Isaac Aguilar Ventura ◽  
Gilles Lubineau

Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces.


2018 ◽  
Vol 6 (24) ◽  
pp. 6423-6428 ◽  
Author(s):  
Bingxin Wang ◽  
Ting Shi ◽  
Yanru Zhang ◽  
Changzhou Chen ◽  
Qiang Li ◽  
...  

The development of flexible sensors with low cost, facile preparation and good reproducibility is of profound significance for wearable electronics and intelligent systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


2020 ◽  
Vol 18 (1) ◽  
pp. 303-313 ◽  
Author(s):  
Aamir Rasheed ◽  
Tahseen Ghous ◽  
Sumaira Mumtaz ◽  
Muhammad Nadeem Zafar ◽  
Kalsoom Akhter ◽  
...  

AbstractIn the present work, a novel continuous flow system (CFS) is developed for the preconcentration and determination of Cr (VI) using Pseudomonas aeruginosa static biomass immobilized onto an effective and low-cost solid support of powdered eggshells. A mini glass column packed with the immobilized biosorbent is incorporated in a CFS for the preconcentration and determination of Cr (VI) from aqueous solutions. The method is based on preconcentration, washing and elution steps followed by colorimetric detection with 1,5-diphenyl carbazide in sulphuric acid. The effects of several variables such as pH, retention time, flow rate, eluent concentration and loaded volume are studied. Under optimal conditions, the CFS method has a linear range between 10 and 100 μg L-1 and a detection limit of 6.25 μg L-1 for the determination of Cr (VI). The sampling frequency is 10 samples per hour with a preconcentration time of 5 mins. Furthermore, after washing with a 0.1 M buffer (pH 3.0), the activity of the biosorbent is regenerated and remained comparable for more than 200 cycles. Scanning electron microscopy reveals a successful immobilization of biomass on eggshells powder and precipitation of Cr (VI) on the bacterial cell surface. The proposed method proves highly sensitive and could be suitable for the determination of Cr (VI) at an ultra-trace level.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


2021 ◽  
pp. 2100511
Author(s):  
Ye Tian ◽  
Jingkai Han ◽  
Jiankui Yang ◽  
Huaping Wu ◽  
Hao Bai

Sign in / Sign up

Export Citation Format

Share Document