On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique

1976 ◽  
Vol 11 (3) ◽  
pp. 374-378 ◽  
Author(s):  
J.F. Dickson
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 813-826
Author(s):  
Farid Uddin Ahmed ◽  
Zarin Tasnim Sandhie ◽  
Liaquat Ali ◽  
Masud H. Chowdhury

1997 ◽  
Vol 282-287 ◽  
pp. 2627-2628
Author(s):  
J.X. Jin ◽  
S.X. Dou ◽  
C. Grantham ◽  
H.K. Liu

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 599
Author(s):  
Jerry R. Meyer ◽  
Chul Soo Kim ◽  
Mijin Kim ◽  
Chadwick L. Canedy ◽  
Charles D. Merritt ◽  
...  

We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.


1989 ◽  
Vol 24 (10) ◽  
pp. 993-1000 ◽  
Author(s):  
G. Charitat ◽  
A. Nezar ◽  
P. Rossel

Sign in / Sign up

Export Citation Format

Share Document