scholarly journals Ship Velocity Automatic Estimation Method via Two-Dimensional Spectrum Pattern of Kelvin Wakes in SAR Images

Author(s):  
Jinxing Li ◽  
Liuying Wang ◽  
Min Zhang ◽  
Yong-Chang Jiao ◽  
Gu Liu
Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 628 ◽  
Author(s):  
Yulei Qian ◽  
Daiyin Zhu

Aiming to acquire ultrahigh resolution images, algorithms for spaceborne spotlight synthetic aperture radar (SAR) imaging typically confront challenges of curved orbit and azimuth spectral aliasing. In order to conquer these difficulties, a method is proposed in this paper to obtain ultrahigh resolution spaceborne SAR images on a curved orbit, which is composed of the modified RMA (Range Migration Algorithm) and the modified deramping-based approach. The modified RMA is developed to deal with the effect introduced by a curved orbit and the modified deramping-based approach is utilized to handle the problem of azimuth spectral aliasing. In the modified RMA, the polynomial expression of SAR two-dimensional spectrum on a curved orbit is derived with fourth-order azimuth phase history model and series reversion. Then, the singular value decomposition (SVD) is applied to decompose the expression of SAR two-dimensional spectrum numerically in order to acquire coordinates for Stolt interpolation in the scenario of curved orbit. In addition, the modified deramping-based approach is derived by introducing orbital state vectors in order to accommodate the situation of curved orbit in the proposed method. Experiments are implemented on point target simulation in order to verify the effectiveness of the presented method. In experiments, the range and azimuth resolution can achieve 0.15 m and 0.14 m, with focused scene size of 3 km by 3 km.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


2017 ◽  
Vol 59 (10) ◽  
pp. 2654-2660 ◽  
Author(s):  
Zhongwei Tan ◽  
Hongmei Li ◽  
Zhichao Ding ◽  
Lei Zhang

Sign in / Sign up

Export Citation Format

Share Document