Joint Source and Channel Coding Using Double Polar Codes

2021 ◽  
pp. 1-1
Author(s):  
Yanfei Dong ◽  
Kai Niu ◽  
Jincheng Dai ◽  
Sen Wang ◽  
Yifei Yuan
Keyword(s):  
Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ce Sun ◽  
Zesong Fei ◽  
Jiqing Ni ◽  
Wei Zhou ◽  
Dai Jia

In legacy long term evolution (LTE) networks, multiple transmission modes are defined to cater to diverse wireless environment and improve the spectrum utilization. However, constrained by user equipment (UE) processing capability on blind detection of downlink control information (DCI), two transmission modes are allowed to be configured to UE simultaneously. In recent 5G standardization, the polar codes have supplanted the tail biting convolution codes (TBCC), becoming the channel coding scheme for downlink control information (DCI). Motivated by its successive decoding property, a novel design of DCI encoding and decoding is proposed in this paper. The proposed scheme could support dynamic configuration of transmission modes with decreasing the complexity of blind detection. Evaluation results from link level simulations show that the performance loss compared to conventional encoding/decoding scheme is generally negligible and the proposed scheme can comply with the false alarm rate (FAR) target of 5G standardization.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 863
Author(s):  
Jianming Cui ◽  
Wenxiu Kong ◽  
Xiaojun Zhang ◽  
Da Chen ◽  
Qingtian Zeng

Polar code has been adopted as the control channel coding scheme for the fifth generation (5G), and the performance of short polar codes is receiving intensive attention. The successive cancellation flipping (SC flipping) algorithm suffers a significant performance loss in short block lengths. To address this issue, we propose a double long short-term memory (DLSTM) neural network to locate the first error bit. To enhance the prediction accuracy of the DLSTM network, all frozen bits are clipped in the output layer. Then, Gaussian approximation is applied to measure the channel reliability and rank the flipping set to choose the least reliable position for multi-bit flipping. To be robust under different codewords, padding and masking strategies aid the network architecture to be compatible with multiple block lengths. Numerical results indicate that the error-correction performance of the proposed algorithm is competitive with that of the CA-SCL algorithm. It has better performance than the machine learning-based multi-bit flipping SC (ML-MSCF) decoder and the dynamic SC flipping (DSCF) decoder for short polar codes.


Author(s):  
Darija Čarapić ◽  
Mirjana Maksimović

The rapid, reliable, and secure data transmission in everyday life and numerous applications is one of the crucial demands of modern society. Mobile wireless communications have advanced significantly in recent decades. From the first (1G) to fifth-generation (5G) of mobile communications, the realization of fast and secure communication has always been challenging as data transfer happens in an imperfect channel environment where noise due to amplification, distortion, and other impairments is present. Channel coding is key to establishing fast communication with low error probability, implying that choosing the proper channel coding scheme is a challenging and crucial task. Higher flexibility and reliability, and low computational complexity, latency, and costs are desired coding technique characteristics. This paper focuses on two 5G channel coding techniques, Low-Density Parity-Check (LDPC) and Polar codes. These codes have been examined in the case of variable message sizes and for a wide range of code rates. In addition, different Polar decoding algorithms have been investigated. Simulations results have confirmed that there is no single channel coding scheme able to meet all 5G requirements as well as the superiorities of LDPC codes in case of long messages and Polar codes for short messages. The ability to support a wide range of code lengths and code rates and excellent Bit Error Rate (BER) performances, justify the utilization of LDPC and Polar codes in 5G communication systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ming Yan ◽  
Xingrui Lou ◽  
Yan Wang

Polar code has the characteristics of simple coding and high reliability, and it has been used as the control channel coding scheme of 5G wireless communication. However, its decoding algorithm always encounters problems of large decoding delay and high iteration complexity when dealing with channel noise. To address the above challenges, this paper proposes a channel noise optimized decoding scheme based on a convolutional neural network (CNN). Firstly, a CNN is adopted to extract and train the colored channel noise to get more accurate estimation noise, and then, the belief propagation (BP) decoding algorithm is used to decode the polar codes based on the output of the CNN. To analyze and verify the performance of the proposed channel noise optimized decoding scheme, we simulate the decoding of polar codes with different correlation coefficients, different loss function parameters, and different code lengths. The experimental results show that the CNN-BP concatenated decoding can better suppress the colored channel noise and significantly improve the decoding gain compared with the traditional BP decoding algorithm.


2021 ◽  
Author(s):  
Tirthadip Sinha ◽  
Jaydeb Bhaumik

Abstract One important innovation in information and coding theory is polar code, which delivers capacity attaining error correction performance varying code rates and block lengths. In recent times, polar codes are preferred to offer channel coding in the physical control channels of the 5G (5 th Generation) wireless standard by 3GPP (Third Generation Partnership Project) New Radio (NR) group. Being a part of the physical layer, Channel coding plays key role in deciding latency and reliability of a communication system. However, the error correction performance degrades with decreased message lengths. 5G NR requires channel codes with low rates, very low error floors with short message lengths and low latency in coding process. In this work, Distributed Cyclic Redundancy Check Aided polar (DCA-polar) code along with Cyclic Redundancy Check Aided polar (CA-polar) code, the two variant of polar codes have been proposed which provide significant error-correction performance in the regime of short block lengths and enable early termination of decoding processes. While CRC bits improve the performance of SCL (successive cancellation list) decoding by increasing distance properties, distributed CRC bits permit path trimming and early-termination of the decoding process. The design can reduce the decoding latency and energy consumption of hardware, which is crucial for mobile applications like 5G. The work also considers the performance analysis of NR polar codes over AWGN (Additive White Gaussian Noise) for short information block lengths at low code rates in the uplink and downlink control channels using SNR (Signal to Noise Ratio) and FAR (False Alarm Rate) as the performance measures. Simulation results illustrate different trade-offs between error-correction and detection performances comparing proposed NR polar coding schemes.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 806 ◽  
Author(s):  
Liqiang Jin ◽  
Hongwen Yang

This paper proposes a distributed joint source-channel coding (DJSCC) scheme using polar-like codes. In the proposed scheme, each distributed source encodes source message with a quasi-uniform systematic polar code (QSPC) or a punctured QSPC, and only transmits parity bits over its independent channel. These systematic codes play the role of both source compression and error protection. For the infinite code-length, we show that the proposed scheme approaches the information-theoretical limit by the technique of joint source-channel polarization with side information. For the finite code-length, the simulation results verify that the proposed scheme outperforms the distributed separate source-channel coding (DSSCC) scheme using polar codes and the DJSCC scheme using classic systematic polar codes.


Sign in / Sign up

Export Citation Format

Share Document