scholarly journals The Proportional Integral Notch and Coleman Blade Effective Wind Speed Estimators and Their Similarities

2022 ◽  
pp. 1-1
Author(s):  
Yichao Liu ◽  
Atindriyo K. Pamososuryo ◽  
Sebastiaan P. Mulders ◽  
Riccardo M.G. Ferrari ◽  
Jan-Willem van Wingerden
2019 ◽  
Vol 44 (2) ◽  
pp. 125-141
Author(s):  
Satyabrata Sahoo ◽  
Bidyadhar Subudhi ◽  
Gayadhar Panda

This article presents a multiple adaptive neuro-fuzzy inference system-based control scheme for operation of the wind energy conversion system above the rated wind speed. By controlling the pitch angle and generator torque concurrently, the generator power and speed fluctuation can be reduced and also turbine blade stress can be minimized. The proposed neuro-fuzzy-based adaptive controller is composed of both the Takagi–Sugeno fuzzy inference system and neural network. First, a step change in wind speed and then a simulated wind speed are considered in the proposed adaptive control design. A MATLAB/Simulink model of the wind turbine system is prepared, and simulations are carried out by applying the proportional integral, fuzzy-proportional integral and the proposed adaptive controller. From the obtained results, the effectiveness of the proposed adaptive controller approach is confirmed.


2016 ◽  
Vol 40 (6) ◽  
pp. 528-539 ◽  
Author(s):  
Mouna Ben Smida ◽  
Anis Sakly

Pitch angle control is considered as a practical technique for power regulation above the rated wind speed. As conventional pitch control commonly the proportional–integral controller is used. However, the proportional–integral type may well not have suitable performance if the controlled system contains nonlinearities as the wind turbine system or the desired wind trajectory varied with higher frequency. In the presence of modeling uncertainties, the necessity of methods presenting controllers with appropriate performance as the advanced control strategies is inevitable. The pitch angle based on fuzzy logic is proposed in this work. We are interested to the development of a wind energy conversion system based on permanent magnet synchronous generator. The fuzzy logic controller is effective to compensate the nonlinear characteristics of the pitch angle to the wind speed. The design of the proposed strategy and its comparison with a conventional proportional–integral controller are carried out. The proposed method effectiveness is verified using MATLAB simulation results.


Machines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 135
Author(s):  
S. AlGhamdi ◽  
I. Hamdan ◽  
Marwa M. M. Youssef ◽  
Omar Noureldeen

Wind energy is regarded as one of the oldest energy sources and has played a significant role. As the nature of wind changes continuously, the generated power varies accordingly. Generation of the pitch angle of a wind turbine’s blades is controlled to prevent damage during high wind speed. This paper presents the development and application of a fuzzy proportional integral control scheme combined with traditional proportional control in the dynamic behavior of pitch angle-regulated wind turbine blades. The combined control regulates rotor speed and output power, allowing control of the power while maintaining the desired rotor speed and avoiding equipment overloads. The studied model is a large-scale wind farm of 120 MW in the Gulf El-Zayt region, Red Sea, Egypt. The control system validity is substantiated by studying different cases of wind speed function: ramp, step, random, and extreme wind speed. The results are compared with the traditional combined control. The model is simulated using MATLAB/SIMULINK software. The simulation results proved the effectiveness of fuzzy tuned PI against traditional PI control.


2020 ◽  
Vol 10 (12) ◽  
pp. 4232
Author(s):  
Mihaela-Codruta Ancuti ◽  
Sorin Musuroi ◽  
Ciprian Sorandaru ◽  
Marian Dordescu ◽  
Geza Mihai Erdodi

The wind turbine’s operation is affected by the wind speed variations, which cannot be followed by the wind turbine due to the large moment of the power plant’s inertia. The method proposed in this paper belongs to the wind turbine power curves (WTPC) approach, which expresses the power curve of the permanent magnet synchronous generator (PMSG) by a set of mathematical equations. The WTPC research papers published before now have not taken into consideration the total power plant inertia at time-variable wind speeds, when the wind turbine’s optimal operation is very difficult to be reached, and its efficiency is thus threatened. The study is based on a wind turbine having a large moment of total inertia, and demonstrates, through extensive simulation results, that the optimal values of the PMSG’s power can be determined based on the kinetic motion equation. This PMSG’s optimal power represents an ideal time-varying curve, and the wind turbine should be controlled so as to closely follow it. For this purpose, proportional integral (PI) and proportional integral derivative (PID) type-based control methods were implemented and analyzed, so that the PMSG’s power oscillations could be reduced, and the PMSG’s angular speed value made comparable to the optimal one, meaning that the wind turbine operates within the optimal operation area, and is efficient. The simulations are actually the numerical solutions obtained by using the Scientific Workplace simulation environment, and they are based on the wind speed measurements collected from a wind farm located in Dobrogea, Romania.


2016 ◽  
Vol 26 (02) ◽  
pp. 1750024 ◽  
Author(s):  
Godpromesse Kenne ◽  
Clotaire Thierry Sanjong ◽  
Eustace Mbaka Nfah

In this paper, an adaptive proportional-integral (API) control strategy is developed to extract the maximum power from a variable wind speed turbine and to regulate the DC-link voltage, rotor flux and AC load voltage in a three-phase grid-connected self-excited induction generator (SEIG) system. The resulting controller associated to the flux-oriented control technique can be easily implemented in practice since finite time estimators for the unknown time-varying rotor resistance, rotor flux (nonmeasurable signal) and stator electrical angular position required for the online implementation of the proposed algorithm are provided. Comparative results with a conventional nonadaptive proportional-integral regulator have shown the superiority of the proposed strategy in terms of robustness with respect to online variation of the rotor resistance (up to 100%) and large varying load condition. The computing results are obtained using relatively low wind speed profile. Thus, the generating system with the proposed control strategy is suitable for variable wind speed turbine installation for grid-connected and remote-area power supply where the wind speed profile is relatively low.


2020 ◽  
pp. 0309524X2093042 ◽  
Author(s):  
Mohamed Metwally Mahmoud ◽  
Mohamed M Aly ◽  
Hossam S Salama ◽  
Abdel-Moamen M Abdel-Rahim

Converters of permanent magnet synchronous generator (PMSG), driven by wind turbines, are controlled by a classical proportional–integral controller. However, many research studies highlighted the challenge in PMSG due to the poor performance of the classical proportional–integral controller, especially in the event of faults or wind speed variations. This article proposes a solution for the limitations of the classical proportional–integral controller with PMSG driven by a wind turbine. The proposed solution includes two optimization techniques: gray wolf optimizer and whale optimizer algorithm. To ensure the effectiveness of the proposed techniques, step change and random variation of wind speed are studied. Moreover, fault ride-through capability of the PMSG is studied with gray wolf optimizer and whale optimizer algorithm techniques during the occurrence of a three-phase fault incident. In this case, a braking chopper controlled by a hysteresis controller is connected to the DC-link capacitor. The simulated results show that compared with the classical proportional–integral controller, gray wolf optimizer and whale optimizer algorithm techniques are greatly efficient in improving the dynamic behavior of the PMSG during wind speed variations. Moreover, gray wolf optimizer and whale optimizer algorithm techniques present their effectiveness during the fault incident by suppressing the transient variations of all the PMSG parameters, improving the fault ride-through capability, and decreasing the total harmonic distortion of the current waveforms. All simulations are performed with MATLAB/ Simulink program package.


Author(s):  
Ahmed M Abdel-Ghanya ◽  
Ibrahim M Al-Helal

Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.


Author(s):  
Qiang Wang ◽  
Dongkai Yang ◽  
Hongxing Gao ◽  
Weiqiang Li ◽  
Yunlong Zhu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 7 (2) ◽  
pp. 127-134
Author(s):  
Safah Tasya Aprilyani ◽  
Irianto Irianto ◽  
Epyk Sunarno

Penggunaan kontrol sangat diperlukan dalam pengaturan kecepatan motor DC. Dalam pengaturan kecepatan motor DC, salah satu jenis kontrol yang digunakan adalah kontrol Proportional Integral (PI). Untuk 4 jenis metode pada kontrol PI yang digunakan adalah metode Ziegler Nichole, Chien Servo 1, Chien Regulator 1 dan perhitungan secara analitik yang telah diperoleh dari data yang sudah ada.  Namun kontrol dengan PI 4 metode yang digunakan  sebagai pembanding memiliki waktu respon kecepatan saat stabil cenderung lambat baik dari nilai settling time, rise time dan steady state. Maka dari itu dilakukan komparasi antara 4 metode kontrol PI dengan penggunaan kontrol fuzzy. Dalam membandingkan antara 4 metode kontrol PI dan kontrol fuzzy terdapat beberapa parameter sebagai perbandingan yaitu maximum overshoot, steady state, rise time dan settling time. Hasil dari perbandingan tersebut adalah kontrol fuzzy dapat menghasilkan performa lebih baik jika dibandingkan dengan 4 metode pada kontrol PI. Kontrol fuzzy memiliki nilai rise time sebesar 0,015 detik, nilai settling time sebesar 0,025 detik dengan kecepatan sebesar 2900 rpm serta error steady state sebesar 3,33% tanpa adanya overshoot dan osilasi.


Sign in / Sign up

Export Citation Format

Share Document