In vivo intravital imaging with a dual-axes confocal microscope in skin

Author(s):  
H. Ra ◽  
W. Piyawattanametha ◽  
E. Gonzalez ◽  
R. Kaspar ◽  
M. J. Mandella ◽  
...  
2005 ◽  
Vol 43 (05) ◽  
Author(s):  
M Goetz ◽  
MF Neurath ◽  
P Delaney ◽  
S Gregor ◽  
D Strand ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (5) ◽  
pp. e001925
Author(s):  
Shujuan Zhou ◽  
Fanyan Meng ◽  
Shiyao Du ◽  
Hanqing Qian ◽  
Naiqing Ding ◽  
...  

BackgroundPoor infiltration and limited activation of transferred T cells are fundamental factors impeding the development of adoptive cell immunotherapy in solid tumors. A tumor-penetrating peptide iRGD has been widely used to deliver drugs deep into tumor tissues. CD3-targeting bispecific antibodies represent a promising immunotherapy which recruits and activates T cells.MethodsT-cell penetration was demonstrated in tumor spheroids using confocal microscope, and in xenografted tumors by histology and in vivo real-time fluorescence imaging. Activation and cytotoxicity of T cells were assessed by flow cytometry and confocal microscope. Bioluminescence imaging was used to evaluate in vivo antitumor effects, and transmission electron microscopy was used for mechanistic studies.ResultsWe generated a novel bifunctional agent iRGD-anti-CD3 which could immobilize iRGD on the surface of T cells through CD3 engaging. We found that iRGD-anti-CD3 modification not only facilitated T-cell infiltration in 3D tumor spheroids and xenografted tumor nodules but also induced T-cell activation and cytotoxicity against target cancer cells. T cells modified with iRGD-anti-CD3 significantly inhibited tumor growth and prolonged survival in several xenograft mouse models, which was further enhanced by the combination of programmed cell death protein 1 (PD-1) blockade. Mechanistic studies revealed that iRGD-anti-CD3 initiated a transport pathway called vesiculovacuolar organelles in the endothelial cytoplasm to promote T-cell extravasation.ConclusionAltogether, we show that iRGD-anti-CD3 modification is an innovative and bifunctional strategy to overcome major bottlenecks in adoptive cell therapy. Moreover, we demonstrate that combination with PD-1 blockade can further improve antitumor efficacy of iRGD-anti-CD3-modified T cells.


2017 ◽  
Vol 22 (5) ◽  
pp. 056008 ◽  
Author(s):  
Cory Olsovsky ◽  
Taylor Hinsdale ◽  
Rodrigo Cuenca ◽  
Yi-Shing Lisa Cheng ◽  
John M. Wright ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 18-18
Author(s):  
Robert Hugh Lee ◽  
Wolfgang Bergmeier

Anti-platelet therapy (APT) is used for secondary prevention of thrombosis. The most commonly prescribed anti-platelet drugs are aspirin and P2Y12 inhibitors, including clopidogrel, prasugrel and ticagrelor. Dual anti-platelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitor is often used in the first 1-12 months after an initial thrombotic event and has a greater anti-thrombotic effect than single agents, but is also associated with a higher risk of bleeding. Due to this risk of hemorrhage, the appropriate use of DAPT in patients requiring percutaneous coronary intervention (PCI) with baseline or periprocedural thrombocytopenia remains unclear. To study the impact of thrombocytopenia on bleeding with APT, we used intravital imaging in a murine hemostasis model and adoptive platelet transfer to generate mice with specific platelet counts with or without platelet inhibition. To generate experimental mice, we used transgenic mice in which platelets express a chimeric GPIb receptor with the extracellular domain replaced with a domain of the human IL-4R (hIL-4R/GPIb-Tg). Endogenous platelets were depleted by injection of anti-hIL-4R antibody, and the recipient mice were then transfused with wild-type (WT) platelets from donor mice treated, or not, with single or dual APT (aspirin 20 mg/kg; clopidogrel 25 mg/kg) to achieve specific platelet counts ranging from 50,000 to 400,000 platelets/μL. We also compared these mice with WT mice (with normal platelet counts, ~1,200,000 platelets/μL) treated with APT. Platelet inhibition was confirmed prior to performing in vivo experiments. Hemostasis was determined by intravital imaging in our saphenous vein laser injury model, in which a 50 μm injury was induced by laser ablation. Real-time top-down epifluorescence imaging was used to determine time to initial hemostasis, rebleeding events, and platelet and fibrin accumulation. In each mouse, 3-5 injuries were induced at different sites and each injury was visualized for 10 minutes. Following real-time imaging, spinning disk confocal Z-stacks of platelet plugs were obtained for 3D reconstruction to compare platelet plug volume. In untreated WT mice, hemostasis was achieved in ~20 seconds. In WT mice treated with DAPT, initial hemostasis was often rapidly achieved but this was followed by significant rebleeding events. Paradoxically, platelet accumulation was increased in WT + DAPT mice due to extravascular accumulation of platelets which occurred during bleeding. However, in plugs that stabilized, plug volume was reduced in WT + DAPT mice. In hIL-4R/GPIb-Tg mice with reduced platelet counts, untreated platelets were able to form a stable hemostatic plug even at 50,000/μL, although time to hemostasis was slightly prolonged. However, as platelet counts decreased in mice with DAPT-treated platelets, initial hemostasis became more prolonged and many injuries never achieved initial hemostasis. These results suggest that DAPT may not be safe in the setting of severe thrombocytopenia. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Author(s):  
Takashi Sakurai ◽  
Seiji Yamamoto ◽  
Atsuo Miyakawa ◽  
Yoshihiko Wakazono ◽  
Takato O. Yoshida ◽  
...  

2007 ◽  
Vol 65 (5) ◽  
pp. AB126 ◽  
Author(s):  
Valentin Becker ◽  
Claus Hann Von Weyhern ◽  
Christian Prinz ◽  
Roland M. Schmid ◽  
Alexander Meining

Cornea ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. e36-e43 ◽  
Author(s):  
W. Matthew Petroll ◽  
Matthew Weaver ◽  
Saurabh Vaidya ◽  
James P. McCulley ◽  
H. Dwight Cavanagh

2016 ◽  
Vol 7 (2) ◽  
pp. 251 ◽  
Author(s):  
C. Yin ◽  
A.K. Glaser ◽  
S. Y. Leigh ◽  
Y. Chen ◽  
L. Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document