scholarly journals Quantitative 3-Dimensional Corneal Imaging In Vivo Using a Modified HRT-RCM Confocal Microscope

Cornea ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. e36-e43 ◽  
Author(s):  
W. Matthew Petroll ◽  
Matthew Weaver ◽  
Saurabh Vaidya ◽  
James P. McCulley ◽  
H. Dwight Cavanagh
Scanning ◽  
2006 ◽  
Vol 24 (4) ◽  
pp. 163-170 ◽  
Author(s):  
W. Matthew Petroll ◽  
James V. Jester ◽  
H. Dwight Cavanagh ◽  
Alex Yu ◽  
Jie Li ◽  
...  

2005 ◽  
Vol 43 (05) ◽  
Author(s):  
M Goetz ◽  
MF Neurath ◽  
P Delaney ◽  
S Gregor ◽  
D Strand ◽  
...  
Keyword(s):  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 42-OR
Author(s):  
VICTORIA SALEM ◽  
LUIS F. DELGADILLO SILVA ◽  
KINGA SUBA ◽  
ALDARA MARTIN ALONSO ◽  
WHEI-CHANG KIM ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marisa Nacke ◽  
Emma Sandilands ◽  
Konstantina Nikolatou ◽  
Álvaro Román-Fernández ◽  
Susan Mason ◽  
...  

AbstractThe signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


2021 ◽  
Vol 9 (5) ◽  
pp. e001925
Author(s):  
Shujuan Zhou ◽  
Fanyan Meng ◽  
Shiyao Du ◽  
Hanqing Qian ◽  
Naiqing Ding ◽  
...  

BackgroundPoor infiltration and limited activation of transferred T cells are fundamental factors impeding the development of adoptive cell immunotherapy in solid tumors. A tumor-penetrating peptide iRGD has been widely used to deliver drugs deep into tumor tissues. CD3-targeting bispecific antibodies represent a promising immunotherapy which recruits and activates T cells.MethodsT-cell penetration was demonstrated in tumor spheroids using confocal microscope, and in xenografted tumors by histology and in vivo real-time fluorescence imaging. Activation and cytotoxicity of T cells were assessed by flow cytometry and confocal microscope. Bioluminescence imaging was used to evaluate in vivo antitumor effects, and transmission electron microscopy was used for mechanistic studies.ResultsWe generated a novel bifunctional agent iRGD-anti-CD3 which could immobilize iRGD on the surface of T cells through CD3 engaging. We found that iRGD-anti-CD3 modification not only facilitated T-cell infiltration in 3D tumor spheroids and xenografted tumor nodules but also induced T-cell activation and cytotoxicity against target cancer cells. T cells modified with iRGD-anti-CD3 significantly inhibited tumor growth and prolonged survival in several xenograft mouse models, which was further enhanced by the combination of programmed cell death protein 1 (PD-1) blockade. Mechanistic studies revealed that iRGD-anti-CD3 initiated a transport pathway called vesiculovacuolar organelles in the endothelial cytoplasm to promote T-cell extravasation.ConclusionAltogether, we show that iRGD-anti-CD3 modification is an innovative and bifunctional strategy to overcome major bottlenecks in adoptive cell therapy. Moreover, we demonstrate that combination with PD-1 blockade can further improve antitumor efficacy of iRGD-anti-CD3-modified T cells.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


2016 ◽  
Vol 41 (10) ◽  
pp. 1973-1979 ◽  
Author(s):  
Zhu Wang ◽  
Wei Wang ◽  
Guang-Jian Liu ◽  
Zheng Yang ◽  
Li-Da Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document