scholarly journals Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity

Author(s):  
O. Laurent ◽  
L. Tortora de Falco
Keyword(s):  
2012 ◽  
Vol 22 (05) ◽  
pp. 471-498 ◽  
Author(s):  
STEFAN HUBER ◽  
MARTIN HELD

This paper deals with the fast computation of straight skeletons of planar straight-line graphs (PSLGs) at an industrial-strength level. We discuss both the theoretical foundations of our algorithm and the engineering aspects of our implementation Bone. Our investigation starts with an analysis of the triangulation-based algorithm by Aichholzer and Aurenhammer and we prove the existence of flip-event-free Steiner triangulations. This result motivates a careful generalization of motorcycle graphs such that their intimate geometric connection to straight skeletons is maintained. Based on the generalized motorcycle graph, we devise a non-procedural characterization of straight skeletons of PSLGs and we discuss how to obtain a discretized version of a straight skeleton by means of graphics rendering. Most importantly, this generalization allows us to present a fast and easy-to-implement straight-skeleton algorithm. We implemented our algorithm in C++ based on floating-point arithmetic. Extensive benchmarks with our code Bone demonstrate an [Formula: see text] time complexity and [Formula: see text] memory footprint on 22 300 datasets of diverse characteristics. This is a linear factor better than the implementation provided by CGAL 4.0, which shows an [Formula: see text] time complexity and an [Formula: see text] memory footprint; the CGAL code has been the only fully-functional straight-skeleton code so far. In particular, on datasets with ten thousand vertices, Bone requires about 0.2–0.6 seconds instead of 4–7 minutes consumed by the CGAL code, and Bone uses only 20 MB heap memory instead of several gigabytes. We conclude our paper with a discussion of the engineering aspects and principles that make Bone reliable enough to compute the straight skeleton of datasets comprising a few million vertices on a desktop computer.


2020 ◽  
Author(s):  
Martin Kutrib

Abstract We study the computational capacity of self-verifying iterative arrays ($${\text {SVIA}}$$ SVIA ). A self-verifying device is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes, no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the answers given must not be contradictory. It turns out that, for any time-computable time complexity, the family of languages accepted by $${\text {SVIA}}$$ SVIA s is a characterization of the so-called complementation kernel of nondeterministic iterative array languages, that is, languages accepted by such devices whose complementation is also accepted by such devices. $${\text {SVIA}}$$ SVIA s can be sped-up by any constant multiplicative factor as long as the result does not fall below realtime. We show that even realtime $${\text {SVIA}}$$ SVIA are as powerful as lineartime self-verifying cellular automata and vice versa. So they are strictly more powerful than the deterministic devices. Closure properties and various decidability problems are considered.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jiarong Liang ◽  
Qian Zhang ◽  
Changzhen Li

In a multiprocessor system, as a key measure index for evaluating its reliability, diagnosability has attracted lots of attentions. Traditional diagnosability and conditional diagnosability have already been widely discussed. However, the existing diagnosability measures are not sufficiently comprehensive to address a large number of faulty nodes in a system. This article introduces a novel concept of diagnosability, called two-round diagnosability, which means that all faulty nodes can be identified by at most a one-round replacement (repairing the faulty nodes). The characterization of two-round t-diagnosable systems is provided; moreover, several important properties are also presented. Based on the abovementioned theories, for the n-dimensional hypercube Qn, we show that its two-round diagnosability is n2+n/2, which is n+1/2 times its classic diagnosability. Furthermore, a fault diagnosis algorithm is proposed to identify each node in the system under the PMC model. For Qn, we prove that the proposed algorithm is the time complexity of On2n.


1998 ◽  
Vol 08 (02) ◽  
pp. 207-220 ◽  
Author(s):  
Tamar Eilam ◽  
Michele Flammini ◽  
Shmuel Zaks

We investigate the time complexity of deciding the existence of layouts of virtual paths in high-speed networks, that enable a connection from one vertex to all others and have maximum hop count h and maximum edge load l, for a stretch factor of one. We prove that the problem of determining the existence of such layouts is NP-complete for every given values of h and l, except for the cases h = 2, l = 1 and h = 1, any l, for which we give polynomial-time layout constructions. Extensions for cases of a stretch factor greater than one are also discussed.


2016 ◽  
Vol 13 (1) ◽  
pp. 53-65
Author(s):  
Vũ Đức Thi

In the relational database theory the most desirable  normal form is the Boyce-Codd normal form (BCNF). This paper investigates some computational problems concerning BCNF relation scheme and BCNF relations. We give an effective algorithm finding a BCNF relation r such that r represents a given BCNF relation scheme s  (i.e., Kr=Ks, where Kr and Ks are  sets of all minimal keys of  r and s). This paper also gives an effective algorithm which  from a given  BCNF relation finds a BCNF relation scheme such that Kr=Ks. Based on these algorithms we prove that  the time  complexity of the  problem that  finds a BCNF relation r  representing a given BCNF relation scheme s is exponential in the size of s and conversely, the complexity of finding a BCNF relation scheme s from a given BCNF relation r such that r represents s also is exponential in the number of attributes. We give a new characterization of the relations and the relation scheme that are uniquely determined by their minimal keys. It is known that these relations and the relation schemes are in the BCNF class. From this characterization we give a polynomial time algorithm deciding whether an arbitrary relation is uniquely determined by its set of all  minimal keys. In the rest if this paper some new bounds of the  size of minimal Armstrong relations for  BCNF relation scheme are given. We show that given a Sperner system K and BCNF relation scheme s a set of minimal keys of which is K, the number of antikeys (maximal nonkeys) of K is polynomial in the number of attributes iff so is the size of minimal Armstrong relation of s.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document