The Chain-link Actuator: Exploiting the Bending Stiffness of McKibben Artificial Muscles to Achieve Larger Contraction Ratios

Author(s):  
Daniel Bruder ◽  
Robert Wood
2011 ◽  
Vol 110-116 ◽  
pp. 1313-1320
Author(s):  
De Xu Geng ◽  
Ji Zhao ◽  
Lei Zhang ◽  
Yun Wei Zhao

This paper developed a novel elongation type of Pneumatic Artificial Muscle (PAM), which is mainly composed of the expandable internal rubber tube surrounded by the external cylindrical helical spring and the two ends are closed. The PAM is not only the actuator of the flexible joint but also the core components to make up of the flexible joint. Therefore, the mechanical properties of the PAM directly influence the performance of the flexible joint. A mathematical model on the axial deformation and bending stiffness of elongation type of PAM was built applying theoretical analysis and experimental research methods. The results show that the axial deformation of PAM and the air pressure supplying to the PAM are nonlinearly related due to the generic nonlinear of deformation of the rubber tube; the bending angle of the PAM is proportional to moment; Similarly, the bending angle of the PAM is also proportional to its length. Furthermore, it indicates that the air pressure indirectly affects the bending stiffness of PAM as the air pressure directly influences the elongation of PAM. Finally, this paper provides a powerful framework for the dynamic analysis and motion accuracy control of the flexible joint or the robot which is composed by the artificial muscles.


2020 ◽  
Vol 2020 (9) ◽  
pp. 35-46
Author(s):  
Aleksandr Skachkov ◽  
Viktor Vasilevskiy ◽  
Aleksey Yuhnevskiy

The consideration of existing methods for a modal analysis has shown a possibility for the lowest frequency definition of bending vibrations in a coach car body in a vertical plane based on an indirect method reduced to the assessment of the bending stiffness of the one-dimensional model as a Bernoulli-Euler beam with fragment-constant parameters. The assessment mentioned can be obtained by means of the comparison of model deflections (rated) and a prototype (measured experimentally upon a natural body) with the use of the least-squares method that results in the necessity of the solution of the multi-dimensional problem with the reverse coefficient. The introduction of the hypothesis on ratability of real bending stiffness of the prototype and easily calculated geometrical stiffness of a model reduces a multi-dimensional problem incorrect according to Adamar to the simplest search of the extremum of one variable function. The procedure offered for the indirect assessment of bending stiffness was checked through the solution of model problems. The values obtained are offered to use for the assessment of the lowest frequency of bending vibrations with the aid of Ritz and Grammel methods. In case of rigid poles it results in formulae for frequencies into which there are included directly the experimental values of deflections.


2018 ◽  
Author(s):  
BENJAMIN GONZALEZ O’BRIEN
Keyword(s):  

Author(s):  
Iain A. Anderson ◽  
Benjamin M. O’Brien

Mechanical devices that include home appliances, automobiles, and airplanes are typically driven by electric motors or combustion engines through gearboxes and other linkages. Airplane wings, for example, have hinged control surfaces such as ailerons. Now imagine a wing that has no hinged control surfaces or linkages but that instead bends or warps to assume an appropriate shape, like the wing of a bird. Such a device could be enabled using an electro-active polymer technology based on electronic artificial muscles. Artificial muscles act directly on a structure, like our leg muscles that are attached by tendon to our bones and that through phased contraction enable us to walk. Sensory feedback from our muscles enables proprioceptive control. So, for artificial muscles to be used appropriately we need to pay attention not only to mechanisms for muscle actuation but also to how we can incorporate self-sensing feedback for the control of position.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


Author(s):  
Sadegh Dastorani ◽  
Reza Hasanzadeh Ghasemi ◽  
Reza Soheilifard

Sign in / Sign up

Export Citation Format

Share Document