The influence analysis of geometry errors on the contact characteristics of ball screw mechanism

Author(s):  
Xu Xiangrong ◽  
Li Yanfeng ◽  
Song Xianchun ◽  
Jiang Hongkui
2021 ◽  
Vol 28 (5) ◽  
pp. 1357-1376
Author(s):  
Bao-bao Qi ◽  
Qiang Cheng ◽  
Shun-lei Li ◽  
Zhi-feng Liu ◽  
Cong-bin Yang

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882073
Author(s):  
Lu-Chao Zhang ◽  
Li Zu

Based on the theory of thermal transmission, this article provides a new method to acquire the friction coefficient in ball screw mechanism. While the screw is in thermal equilibrium, the heat absorption is equal to the heat dissipation. The heat absorption is able to be achieved by calculating the heat energy due to the friction at the contact area and the heat dissipation can be calculated by the law of thermodynamics. When the temperature rise is determined, the heat dissipation can be obtained and the friction coefficient in ball screw mechanism can be calculated further. In order to confirm the validity of this method, a measuring system is constructed to obtain the temperature rise of ball screws. The experimental results show that the temperature rise has the same tendency with the theoretical values depending on this model. Therefore, it can be exploited to predict the temperature rise of ball screws in the rated life cycle when the ball screw is under the condition of thermal equilibrium. Furthermore, this model can be used to evaluate the mechanical efficiency, which is an important parameter for the performance of the ball screw.


1994 ◽  
Vol 116 (3) ◽  
pp. 849-855 ◽  
Author(s):  
M. C. Lin ◽  
B. Ravani ◽  
S. A. Velinsky

This paper studies the kinematics of the Ball Screw Mechanism (BSM) with the aim of developing a foundation for understanding the motion of the balls and their contact patterns with the contacting elements. It is shown that there is always slip between the balls and the nut or screw, and therefore, the no-slip condition assumed in the BSM literature is not attainable. The effect of contact deformation on the motion of the balls is also studied and is used to develop the pattern of the constant sliding lines of contact between the ball and the screw or the nut. The results have applications in efficiency analysis, design, wear evaluation and finite element modeling of the BSM.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881928 ◽  
Author(s):  
Jun Liu ◽  
Yi Ou

This article establishes an axial contact stiffness model of position preloaded ball screw mechanism based on Hertz contact theory. The analysis of dynamic axial contact stiffness is one of the foundations of the research on the dynamic characteristic of the ball screw feed drive system. The model takes into account the coupling relationship between the contact angle and the normal contact force, as well as the coupling relationship between the elastic deformation and the contact deformation coefficient. The static and dynamic axial contact stiffness characteristics of the preloaded ball screw mechanism are studied. The numerical analysis result shows that the static contact stiffness of the preloaded ball screw mechanism increases with the increase in the preload and decreases with the increase in the axial load. The dynamic contact stiffness of the preloaded ball screw mechanism increases with the increase in the screw’s rotational speed. The variation range of dynamic contact stiffness increases with the increase in axial load under the same preload. And the variation range of dynamic contact stiffness decreases with the increase in preload under the same axial load. The axial contact stiffness model established in this article can be used to analyze either static or dynamic contact stiffness of position preloaded ball screw mechanism.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Jia En Foo ◽  
Shin Horng Chong ◽  
Wai Keat Hee ◽  
Ser Lee Loh ◽  
Norhaslinda Hashim

Ball screw mechanisms are widely applied in different industries due to their capability in achieving precise positioning performance as well as its long travel range for positioning, travelling and contouring actions. However, this mechanism exhibits nonlinearities in micro movement. In this paper, a disturbance observer and PD controller (PDDO) is proposed in ball screw mechanism to achieve fast and precise positioning performance. A macrodynamic mathematical model of the mechanism is derived. PDDO controller is designed to achieve fast positioning in micro travel range. The robustness of the controller against mass is examined. The experimental results demonstrated that the PDDO controller achieves better performance in fast tracking (3 Hz) with working range at 100 μm, 1 mm and 3 mm as compared to the PID controller. Besides that, the PDDO controller also demonstrated its robustness in the presence of mass changes.


Author(s):  
M.-C. Lin ◽  
S. A. Velinsky ◽  
B. Ravani

Abstract This paper develops theories for evaluating the efficiency of the ball screw mechanism and additionally, for designing this mechanism. Initially, a quasi-static analysis, which is similar to that of the early work in this area, is employed to evaluate efficiency. Dynamic forces, which are neglected by the quasi-static analysis, will have an effect on efficiency. Thus, an exact theory based on the simultaneous solution of both the Newton-Euler equations of motion and the relevant kinematic equations is employed to determine mechanism efficiency, as well as the steady-state motion of all components within the ball screw. However, the development of design methods based on this exact theory is difficult due to the extensive computation necessary and thus, an approximate closed-form representation, that still accounts for the ball screw dynamics, is derived. The validity of this closed-form solution is proven and it is then used in developing an optimum design methodology for the ball screw mechanism based on efficiency. Additionally, the self-braking condition is examined, as are load capacity considerations.


Sign in / Sign up

Export Citation Format

Share Document