A Novel Method of Planar Near-Field Scattering Measurements

Author(s):  
Ding Yu ◽  
Demin Fu ◽  
Qizhong Liu ◽  
Naihong Mao
Author(s):  
Jeff Dunnihoo ◽  
Pasi Tamminen ◽  
Toni Viheriäkoski

Abstract In this study we present a novel method to use a field collapse method together with fully automated near field scanning equipment to construct E- and H-field information of a system during transient ESD events. This inexpensive method provides an alternative way for system designers to validate and analyze the EMC/ESD capability of electronic systems without TLP pulsers, ESD simulators, or precision inductive current probes.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 690 ◽  
Author(s):  
Jinsong Zhu ◽  
Wei Li ◽  
Da Lin ◽  
Ge Zhao

A novel method of near-field computer vision (NFCV) was developed to monitor the jet trajectory during the jetting process, which was used to precisely predict the falling point position of the jet trajectory. By means of a high-resolution webcam, the NFCV sensor device collected near-field images of the jet trajectory. Preprocessing of collected images was carried out, which included squint image correction, noise elimination, and jet trajectory extraction. The features of the jet trajectory in the processed image were extracted, including: start-point slope (SPS), end-point slope (EPS), and overall trajectory slope (OTS) based on the proposed mean position method. A multiple regression jet trajectory range prediction model was established based on these trajectory characteristics and the reliability of the model was verified. The results show that the accuracy of the prediction model is not less than 94% and the processing time is less than 0.88s, which satisfy the requirements of real-time online jet trajectory monitoring.


MRS Advances ◽  
2019 ◽  
Vol 4 (43) ◽  
pp. 2345-2354 ◽  
Author(s):  
Komal Agarwal ◽  
Rahul Sahay ◽  
Avinash Baji ◽  
Arief S. Budiman

ABSTRACTNatural structural materials (NSMs) such as nacre, teeth, bones and crustacean exoskeleton are usually made of weak biomaterials arranged in specific structural design imparting them remarkable mechanical characteristics. Such hierarchical structural layouts found in nature encourage designing of mechanically desirable synthetic structural materials (SSMs). Among variety of natural hierarchical layouts, this paper specifically focuses on helicoidal architectural design found in the tough dactyl club of mantis shrimp. We first decode the mechanics behind helicoidal microstructural design and document the development of impact resistant macroscale helicoidal architectured synthetic structural materials (HA-SSMs). Next, near-field electrospinning technique (NFES)- both melt (polycaprolactone) and solution (polyvinylidene fluoride) type has been discussed in detail, as a novel method for developing lab scale 3D biomimetic HA-SSMs in micro-nanoscale. Further, the effect of the helical arrangement, size of substructures and surface treatment on strength and toughness of NFES fabricated HA-SSMs samples is analysed.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1352 ◽  
Author(s):  
Rafael González Ayestarán

The powerful support vector regression framework is proposed in a novel method for near-field focusing using antenna arrays. By using this machine-learning method, the set of weights required in the elements of an array can be calculated to achieve an assigned near-field distribution focused on one or more positions. The computational cost is concentrated in an initial training process so that the trained system is fast enough for applications where moving devices are involved. The increased learning capabilities of support vector machines allow using a reduced number of training samples. Thus, these training samples may be generated with a prototype or a convenient electromagnetic analysis tool, and hence realistic effects, such as coupling or the individual radiation patterns of the elements of the arrays, are accounted for. Illustrative examples are presented.


ISAPE2012 ◽  
2012 ◽  
Author(s):  
Wu Yang ◽  
Xue Zheng-Hui ◽  
Ren Wu ◽  
Li Wei-Ming ◽  
Xu Xiao-Wen

Sign in / Sign up

Export Citation Format

Share Document