Multiple access in MAC layer based on surrounding conditions of wireless stations

Author(s):  
Makiko Matsumoto ◽  
Masato Oguchi
Keyword(s):  
Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 632 ◽  
Author(s):  
Yiting Wang ◽  
Liang Liu ◽  
Wenzhao Gao

With the aim of addressing the problem of high overhead and unstable performance of the existing Source Location Privacy (SLP) protection algorithms, this paper proposes an efficient algorithm based on Circular Trap (CT) which integrates the routing layer and MAC layer protocol to provide SLP protection for WSNs. This algorithm allocates time slots for each node in the network by using Time Division Multiple Access (TDMA) technology, so that data loss caused by channel collisions can be avoided. At the same time, a circular trap route is formed to induce an attacker to first detect the packets from the nodes on the circular route, thereby moving away from the real route and protecting the SLP. The experimental results demonstrate that the CT algorithm can prevent the attacker from tracking the source location by 20% to 50% compared to the existing cross-layer SLP-aware algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Yang ◽  
Ling Wang ◽  
Jian Xie ◽  
Zhaolin Zhang

Wireless sensors network (WSN) is widely used in the Internet of Things at present. However, limited energy source is a critical problem in the improvement and practical applications of WSN, so it is necessary to improve the energy efficiency. As another important evaluation criterion of transmission performance, throughput should be improved too. To mitigate both of the problems at the same time, by taking the advantages of Time Division Multiple Access (TDMA) and Carrier Sense Multiple Access (CSMA) at the medium access control (MAC) layer of WSN, we propose a hybrid TDMA/CSMA MAC layer protocol. Meanwhile, we design a novel power control scheme to further reduce the energy consumption and optimize the transmission slots. The simulation results demonstrate that the proposed protocol significantly improves the throughput and energy efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Irum Nosheen ◽  
Shoab A. Khan ◽  
Umar Ali

In mission and time critical applications, bandwidth and delay optimizations are the key goals of communication systems. This paper presents a cross-layer framework design that reduces the call setup time, provides collision-free communication, and reuses the empty slots of Time Division Multiple Access (TDMA) protocol which otherwise causes low throughput and large delay. As number of communicating nodes in tactical networks is small as compared to commercial mobile ad hoc networks (MANETs), classical TDMA will yield huge number of empty slots and any Carrier Sense Multiple Access/Collision Detection (CSMA/CD) technique may cause more delay in some critical scenarios. Proposed methodology gives a Cross-Layer Architecture for Network (NET) Layer and Medium Access Control (MAC) Layer. Our design provides bandwidth efficient, collision-free communication to Software-Defined Radios (SDRs) in self-forming and self-healing tactical networks with low call setup time and multihop routing. For this purpose TDMA as MAC layer protocol and Ad Hoc On Demand Distance Vector (AODV) as Network Layer Routing Protocol are used. Our slot allocation (SA) algorithm, Cross-Layer TDMA (CL-TDMA), consists of control phase where AODV control packets are exchanged and data transfer phase where transmission of data and voice occurs. All active radios in vicinity gather information about communicating nodes based on the exchange of control packets by SDRs. Our algorithm then uses this information to help all active SDRs find slot(s) that will be used for collision-free transmission. A number of experiments are performed to establish improved performance of the proposed technique compared to other established techniques and protocols.


2012 ◽  
Vol 58 (1) ◽  
Author(s):  
Nor-Syahidatul N. Ismail ◽  
F. Yunus ◽  
S. H. Syed Ariffin ◽  
A. A. Shahidan ◽  
N. Fisal ◽  
...  

The design of Medium Access Control (MAC) layer in Wireless Sensor Network (WSN) is very important because it gives significant impact in network performance especially in term of energy consuming. Contention Access method which is Carrier Sense Multiple Access (CSMA) will encounter collision problem when more than one node want to access the network simultaneously. Meanwhile, the issue in slotted access which is Time Division Multiple Access (TDMA) is channel utilization when the usage of the slot is neglected and wasted in transmission network. In this paper, we propose a hybrid MAC that combines both strengths of CSMA and TDMA in one protocol while avoiding their weaknesses to improve the network performance. The simple and efficient transmission in CSMA method will be used in neighbor discovery (ND) and slot allocation (SA) process. For data transmission, non collision transmission method which is TDMA will be used and it will be changed to CSMA depending on the contention level of the channel. This proposed protocol is suitable for priority application usage where the important information will arrived at the destination in acceptable delay time.


Author(s):  
Nor-Syahidatul N. Ismail ◽  
Sharifah H. S. Ariffin ◽  
N. M. Abdul Latiff ◽  
Farizah Yunus ◽  
Norshiela Fisal

Wireless Sensor Networks (WSNs) have been attracting increasing interest lately from the research community and industry. The main reason for such interest is the fact that WSNs are considered a promising means of low power and low cost communication that can be easily deployed. Nowadays, the advanced protocol design in WSNs has enhanced their capability to transfer video in the wireless medium. In this chapter, a comprehensive study of Medium Access Control (MAC) and MPEG-4 video transmission is presented. Various classifications of MAC protocols are explained such as random access, schedule access, and hybrid access. In addition, a hybrid MAC layer protocol design is proposed, which combines Carrier Sense Multiple Access (CSMA) and unsynchronized Time Division Multiple Access (TDMA) protocols using a token approach protocol. The main objective of this chapters is to present the design of a MAC layer that can support video transfer between nodes at low power consumption and achieve the level of quality of service (QoS) required by video applications.


Sign in / Sign up

Export Citation Format

Share Document