MRI-thermometry on ex vivo swine liver: Preliminary trials to assess the sensitivity of two sequences

Author(s):  
Emiliano Schena ◽  
Paola Saccomandi ◽  
Marina Piccolo ◽  
Carlo Massaroni ◽  
Sergio Silvestri ◽  
...  
Keyword(s):  
Ex Vivo ◽  
2020 ◽  
Vol 43 (1) ◽  
pp. 3-9
Author(s):  
Lucrezia Mazzantini ◽  
Mattia Dimitri ◽  
Fabio Staderini ◽  
Fabio Cianchi ◽  
Andrea Corvi

Ex vivo testing is a fundamental step in the development of new medical devices; indeed without it, it is impossible to proceed with in vivo tests. At the University of Florence, a robotic tool for microwave thermal ablation is under development. Up to now, the thermoablation tests for the validation of the tool were carried out on non-perfused ex vivo livers, providing results that inevitably differ from those obtainable with an in vivo liver. The aim is to design, and consequently create, a compact and transportable system which allows to perfuse a swine liver with physiological solution and heparin. This device should also allow the organ to be transported from the explantation place to the laboratory, keeping it under normothermal condition. The perfusor was designed to simulate the physiological flow within the liver in the most realistic way possible. The design, construction, and optimization of the perfusor have been addressed using the physiological values of hepatic flow and pressure identified in the literature, neglecting in the first instance any load losses. Therefore, open circuit tests were conducted, validated through perfusion tests on freshly explanted pig liver; during these tests, the surface temperature of the organ was recorded using an infrared camera, and the fluid temperature was verified using an immersion probe. The perfusion test showed a good alignment with the open circuit tests, demonstrating the validity of the simplifications adopted to treat the complex vascular structure of the liver.


2019 ◽  
Vol 64 (4) ◽  
pp. 449-457 ◽  
Author(s):  
Babak Bazrafshan ◽  
Ahmad Koujan ◽  
Frank Hübner ◽  
Christian Leithäuser ◽  
Norbert Siedow ◽  
...  

Abstract The purpose of this study was to develop a thermometry software tool for temperature monitoring during laser-induced interstitial thermotherapy (LITT). C++ programming language and several libraries including DICOM Toolkit, Grassroots DICOM library, Insight Segmentation and Registration Toolkit, Visualization Toolkit and Quasar Toolkit were used. The software’s graphical user interface creates windows displaying the temperature map and the coagulation extent in the tissue, determined by the magnetic resonance imaging (MRI) thermometry with the echo planar imaging sequence and a numerical simulation based on the radiation and heat transfer in biological tissues, respectively. The software was evaluated applying the MRI-guided LITT to ex vivo pig liver and simultaneously measuring the temperature through a fiber-optic thermometer as reference. Using the software, the temperature distribution determined by the MRI method was compared with the coagulation extent simulation. An agreement was shown between the MRI temperature map and the simulated coagulation extent. Furthermore, the MRI-based and simulated temperatures agreed with the measured one – a correlation coefficient of 0.9993 and 0.9996 was obtained, respectively. The precision of the MRI temperature amounted to 2.4°C. In conclusion, the software tool developed in the present study can be applied for monitoring and controlling the LITT procedure in ex vivo tissues.


2020 ◽  
Vol 6 (4) ◽  
pp. 1041-1048
Author(s):  
Michela Bullone ◽  
Roberto Garberoglio ◽  
Paola Pregel ◽  
Francesca T. Cannizzo ◽  
Arianna Gagliardo ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Francesco Giurazza ◽  
Carlo Massaroni ◽  
Sergio Silvestri ◽  
Bruno Beomonte Zobel ◽  
Emiliano Schena

Author(s):  
E.J. Prendiville ◽  
S. Laliberté Verdon ◽  
K. E. Gould ◽  
K. Ramberg ◽  
R. J. Connolly ◽  
...  

Endothelial cell (EC) seeding is postulated as a mechanism of improving patency in small caliber vascular grafts. However the majority of seeded EC are lost within 24 hours of restoration of blood flow in previous canine studies . We postulate that the cells have insufficient time to fully develop their attachment to the graft surface prior to exposure to hemodynamic stress. We allowed EC to incubate on fibronectin-coated ePTFE grafts for four different time periods after seeding and measured EC retention after perfusion in a canine ex vivo shunt circuit.Autologous canine EC, were enzymatically harvested, grown to confluence, and labeled with 30 μCi 111 Indium-oxine/80 cm 2 flask. Four groups of 5 cm x 4 mm ID ePTFE vascular prostheses were coated with 1.5 μg/cm.2 human fibronectin, and seeded with 1.5 x 105 EC/ cm.2. After seeding grafts in Group 1 were incubated in complete growth medium for 90 minutes, Group 2 were incubated for 24 hours, Group 3 for 72 hours and Group 4 for 6 days. Grafts were then placed in the canine ex vivo circuit, constructed between femoral artery and vein, and subjected to blood flow of 75 ml per minute for 6 hours. Continuous counting of γ-activity was made possible by placing the seeded graft inside the γ-counter detection crystal for the duration of perfusion. EC retention data after 30 minutes, 2 hours and 6 hours of flow are shown in the table.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


Sign in / Sign up

Export Citation Format

Share Document