Laterally vibrating lithium niobate MEMS resonators with 30% electromechanical coupling coefficient

Author(s):  
Flavius V. Pop ◽  
Abhay S. Kochhar ◽  
Gabriel Vidal-Alvarez ◽  
Gianluca Piazza
2014 ◽  
Vol 209 ◽  
pp. 183-190 ◽  
Author(s):  
Roy H. Olsson ◽  
Khalid Hattar ◽  
Sara J. Homeijer ◽  
Michael Wiwi ◽  
Matthew Eichenfield ◽  
...  

2016 ◽  
Vol 848 ◽  
pp. 339-343
Author(s):  
Xiao Kun Zhao ◽  
Bo Ping Zhang ◽  
Lei Zhao ◽  
Li Feng Zhu

The modified behavior of the phase transition temperatures (TO-T and/or TC) between orthorhombic (O), tetragonal (T) and cubic (C) that caused by doping Sb5+ in (Li0.052Na0.493K0.455)(Nb1-xSbx)O3 (LNKNSx) ceramics was reported in the present investigation. The results show that differing from the insensitive TO-T to the Sb5+ content, TC splits into two peaks TCI and TCII when doping Sb5+. The decreased TCI by raising x may be ascribed to the Sb-rich grains and the settled TCII round 480 °C resulting from the Sb-lack ones. The enhanced piezoelectric coefficient d33 value of 263 pC/N and planar mode electromechanical coupling coefficient kp value of 42.5% at x=0.052 can be attributed to the polymorphic phase boundary (PPB) behavior with an appropriate ratio between T and O phases without any second phase.


2018 ◽  
Vol 29 (20) ◽  
pp. 3949-3959 ◽  
Author(s):  
Adriane G Moura ◽  
Alper Erturk

We establish and analyze an analytical framework by accounting for both the piezoelectric and flexoelectric effects in bimorph cantilevers. The focus is placed on the development of governing electroelastodynamic piezoelectric–flexoelectric equations for the problems of resonant energy harvesting, sensing, and actuation. The coupled governing equations are analyzed to obtain closed-form frequency response expressions via modal analysis. The combined piezoelectric–flexoelectric coupling coefficient expression is identified and its size dependence is explored. Specifically, a typical atomistic value of the flexoelectric constant for barium titanate is employed in the model simulations along with its piezoelectric constant from the existing literature. It is shown that the effective electromechanical coupling of a piezoelectric material, such as barium titanate, is significantly enhanced for thickness levels below 100 nm. The electromechanical coupling coefficient of a barium titanate bimorph cantilever increases from the bulk piezoelectric value of 0.065 to the combined piezoelectric–flexoelectric value exceeding 0.3 toward nanometer thickness level. Electromechanical frequency response functions for resonant power generation and dynamic actuation also capture the size-dependent enhancement of the electromechanical coupling. The analytical framework given here can be used for parameter identification and design of nanoscale cantilevers that can be used as energy harvesters, sensors, and actuators.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rui Ma ◽  
Weiguo Liu ◽  
Xueping Sun ◽  
Shun Zhou

This paper studied the manufacturing process of Piezoelectric-on-Silicon (POS) substrate which integrates 128° Y–X Lithium niobate thin film and silicon wafer using Smart-Cut technology. The blistering and exfoliation processes of the He as-implanted LN crystal under different annealing temperatures are observed by the in-situ method. Unlike the conventional polishing process, the stripping mechanism of the Lithium niobate thin film is changed by controlling annealing temperature, which can improve the surface morphology of the peeling lithium niobate thin film. We prepared the 128° Y–X POS substrate with high single-crystal Lithium niobate thin film and surface roughness of 3.91 nm through Benzocyclobutene bonding. After simulating the surface acoustic wave (SAW) characteristics of the POS substrate, the results demonstrate that the Benzocyclobutene layer not only performs as a bonding layer but also can couple more vibrations into the LN thin film. The electromechanical coupling coefficient of the POS substrate is up to 7.59% in the Rayleigh mode when hLN/λ is 0.3 and hBCB/λ is 0.1. Therefore, as a high-performance substrate material, the POS substrate has proved to be an efficient method to miniaturize and integrate the SAW sensor.


Sign in / Sign up

Export Citation Format

Share Document