A preliminary study on self sensing composite structures with carbon nanotubes

Author(s):  
Diego Scaccabarozzi ◽  
Simone Cinquemani ◽  
Claudio Sbarufatti ◽  
Alberto Jimenez-Suarez ◽  
Maria Sanchez ◽  
...  
Author(s):  
Bipul Barua ◽  
Mrinal C. Saha

A simple approach has been reported toward the development of hybrid nano/microfiber composite structures with improved mechanical properties. Ultrasound assisted atomization process has been utilized for depositing carbon nanotubes (CNTs) on the surface of carbon fiber (CF) cloth using dilute solutions of CNTs in N, N-dimethylformamide (DMF). Dilute solutions with three different CNT concentrations such as 1 × 10−4 g/ml, 5 × 10−4 g/ml, and 10 × 10−4 g/ml were fed into an ultrasonic atomizer probe using a positive displacement syringe pump and sprayed directly on CF cloth rested on a hot plate inside a deposition chamber. Several layers of hybrid CF cloths containing CNTs were used to fabricate composite laminates using a vacuum assisted resin transfer molding (VARTM). Although the dispersion of CNTs in DMF was found very well for all three concentrations, the distribution of CNTs on CFs was only found homogeneous for 1 × 10−4 g/ml solution. It was found that the hybrid composite containing 0.3 wt. % CNTs loading fabricated using 1 × 10−4 g/ml solution showed about 25% improvement in flexural strength, although moderate improvement in flexure modulus was achieved for all three concentrations. The improved strength is believed to be due to homogeneous distribution of CNTs, which resulted in increased surface roughness and mechanical interlocking between fibers and matrix.


2017 ◽  
Vol 148 ◽  
pp. 70-79 ◽  
Author(s):  
H. Benyahia ◽  
M. Tarfaoui ◽  
V. Datsyuk ◽  
A. El Moumen ◽  
S. Trotsenko ◽  
...  

2012 ◽  
Vol 05 ◽  
pp. 704-711
Author(s):  
SIAVASH KHABAZIAN ◽  
SOHRAB SANJABI

Multi-walled carbon nanotubes films formed randomly aligned laterally by electrophoresis. Multi-walled carbon nanotubes with lengths of about 10 μ was shortened and functionalized by a mixture of sulfuric and nitric acid. The functional groups on carbon nanotubes were elaborated by FT-IR. Chemically shortened MWCNTs disperse in organic and aqueous solvent and deposited on electrode vertically-aligned by applying a constant DC electric field. The alignment of MWCNTs was observed by scanning electron microscopy. It also the effect of various substrates on alignment of multi-walled carbon nanotubes was investigated.


Author(s):  
Yung J. Jung ◽  
Laila Jaber-Ansari ◽  
Xugang Xiong ◽  
Sinan Mu¨ftu¨ ◽  
Ahmed Busnaina ◽  
...  

We will present a method to fabricate a new class of hybrid composite structures based on highly organized multiwalled carbon nanotube (MWNT) and singlewalled carbon nanotube (SWNT) network architectures and a polydimethylsiloxane (PDMS) matrix for the prototype high performance flexible systems which could be used for many daily-use applications. To build 1–3 dimensional highly organized network architectures with carbon nanotubes (both MWNT and SWNT) in macro/micro/nanoscale we used various nanotube assembly processes such as selective growth of carbon nanotubes using chemical vapor deposition (CVD) and self-assembly of nanotubes on the patterned trenches through solution evaporation with dip coating. Then these vertically or horizontally aligned and assembled nanotube architectures and networks are transferred in PDMS matrix using casting process thereby creating highly organized carbon nanotube based flexible composite structures. The PDMS matrix undergoes excellent conformal filling within the dense nanotube network, giving rise to extremely flexible conducting structures with unique electromechanical properties. We will demonstrate its robustness under large stress conditions, under which the composite is found to retain its conducting nature. We will also demonstrate that these structures can be directly utilized as flexible field-emission devices. Our devices show some of the best field enhancement factors and turn-on electric fields reported so far.


2014 ◽  
Vol 50 (52) ◽  
pp. 6818 ◽  
Author(s):  
Won Jun Lee ◽  
Uday Narayan Maiti ◽  
Ju Min Lee ◽  
Joonwon Lim ◽  
Tae Hee Han ◽  
...  

2013 ◽  
Vol 330 ◽  
pp. 68-76 ◽  
Author(s):  
Li Min Gao ◽  
Xin Lin Qing

Advanced fiber-reinforced polymer composites are known to possess outstanding specific strength and stiffness and their use in structural applications continues to expand. Most structural composites are susceptible to the formation of micro-scale damage in polymer matrix under adverse conditions which has significant implications on the durability and performance of fiber composites. Thus, it is imperative to detect the initiation and evolution of damage in composites long before their catastrophic failure. In this report, our recent research in sensing of micro-crack in matrix in situ and in real time for glass fiber composites was reviewed. Carbon nanotubes were dispersed into glass fiber composites by three roll mill technique. A resistance parameter was utilized to quantitatively characterize damage initiation and propagation. Damage mechanisms and development were investigated under tension, fatigue loadings. This research demonstrates the feasibility and benefits of electrical resistance measurements in the sensing of micro-scale damage for fiber composites using carbon nanotubes and offers the potential for in-service health monitoring of composite structures.


2008 ◽  
Vol 1081 ◽  
Author(s):  
Liviu Popa-Simil

AbstractThe nanotubes presents high potential of applications in nuclear power, integrating them both in advanced fuels developments nano-breeding and in nano-shielding. The carbon nanotubes may be successfully used to create fuel wires used in high temperature applications and near perfect burning generating new procedures in nuclear reactor waste management while reducing the waste by two orders of magnitude. The modified nanowire may hold various other materials as conductors and insulators being useful in direct conversion of the nuclear energy into electricity, by including in the center a sequence of high and low electron density conductors. As direct conversion structures they can handle all the required functions into a nuclear reactor or energy harvesting blanket to assure high power density, high efficiency and minimal waste. Another very challenging application is the usage of nanotube to channel low energy nuclear radiation and guide it, similar to the GHz wave-guides or to hundreds of THz optic fibers. The operation domain of the nanotubes is placed mainly in the domain of UV to X rays, being the role of composite structures or nanowire channeling to cover the gamma ray domain. The carbon nanotubes may become useful cold neutrons transport devices with directive capabilities as short bending or focusing. The theoretical approaches and simulations predicted these new application capabilities of nanowires for nuclear materials with exceptional properties.


Sign in / Sign up

Export Citation Format

Share Document