Path loss and time dispersion analysis for outdoor roadway UWB propagation channel

Author(s):  
Solomon Nunoo ◽  
Uche A. K. Chude-Okonkwo ◽  
Razali Ngah
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lorenzo Rubio ◽  
Juan Reig ◽  
Herman Fernández ◽  
Vicent M. Rodrigo-Peñarrocha

The knowledge of the propagation channel properties is an important issue for a successful design of ultrawideband (UWB) communication systems enabling high data rates in short-range applications. From an indoor measurement campaign carried out in a typical laboratory environment, this paper analyzes the path loss and time-dispersion properties of the UWB channel. Values of the path loss exponent are derived for the direct path and for a Rake receiver structure, examining the maximum multipath diversity gain when anallRake (ARake) receiver is used. Also, the relationship between time-dispersion parameters and path loss is investigated. The UWB channel transfer function (CTF) was measured in the frequency domain over a channel bandwidth of 7.5 GHz in accordance with the UWB frequency range (3.1–10.6 GHz).


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1261 ◽  
Author(s):  
Lorenzo Rubio ◽  
Rafael P. Torres ◽  
Vicent M. Rodrigo Peñarrocha ◽  
Jesús R. Pérez ◽  
Herman Fernández ◽  
...  

In this paper, path loss and time-dispersion results of the propagation channel in a typical office environment are reported. The results were derived from a channel measurement campaign carried out at 26 GHz in line-of-sight (LOS) and obstructed-LOS (OLOS) conditions. The parameters of both the floating-intercept (FI) and close-in (CI) free space reference distance path loss models were derived using the minimum-mean-squared-error (MMSE). The time-dispersion characteristics of the propagation channel were analyzed through the root-mean-squared (rms) delay-spread and the coherence bandwidth. The results reported here provide better knowledge of the propagation channel features and can be also used to design and evaluate the performance of the next fifth-generation (5G) networks in indoor office environments at the potential 26 GHz frequency band.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2431 ◽  
Author(s):  
Seppe Van Brandt ◽  
Robbe Van Thielen ◽  
Jo Verhaevert ◽  
Tanja Van Hecke ◽  
Hendrik Rogier

This paper reports the characterization of the 2.45-GHz-ISM-band radio wave propagation channel. Specifically, measurements were performed in an underground parking garage, with the aim of optimizing breadcrumb systems for a Rapid Intervention Team application. The effects of the high penetration loss and large reflections by the concrete reinforced building structure on the path loss and the large-scale fading were studied. Based on the analysis of the wireless channel, critical points for reliable communication between members of a Rapid Intervention Team were identified. In particular, attention was paid to dealing with large, spatially confined signal losses due to shadowing, the anticipation of corner losses and the ability of the system to operate on multiple floors.


2020 ◽  
pp. 1-24
Author(s):  
Yang-yang Li ◽  
Jin Liu ◽  
Xiao-lin Ning ◽  
Xiao Chen ◽  
Zhi-wei Kang

The time dispersion effect affects the accuracy of solar time difference of arrival (TDOA) navigation. In this celestial autonomous navigation, Mars's moons are reflecting celestial bodies, and their shape affects the TDOA dispersion model. In the modelling process of traditional methods, the moons of Mars (Phobos and Deimos) are regarded as points, which causes the model to be inaccurate. In order to solve these problems, we simplified the Mars's moons into ellipsoids or solid diamonds, and then established a TDOA model with the nonspherical Mars's moons as reflecting celestial bodies through differential geometry and geometric optics. Finally, we analysed the time dispersion caused by the Mars's moons in theory. Theoretical analysis and experiments show that the point model error is 5·66 km, and the 3D model error is within 70 m. Thus, the 3D TDOA model established in this paper is meaningful. In addition, the Sun–Mars-moons–spacecraft angle, solar flare, three-axis length, and attitude of the Mars's moons have a great effect on the dispersion profile, while the Mars's moons-to-spacecraft distance has a small effect.


2006 ◽  
Vol 5 (3) ◽  
pp. 550-559 ◽  
Author(s):  
A. Muqaibel ◽  
A. Safaai-Jazi ◽  
A. Attiya ◽  
B. Woerner ◽  
S. Riad

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2015
Author(s):  
Ahmed Al-Saman ◽  
Marshed Mohamed ◽  
Michael Cheffena ◽  
Arild Moldsvor

Wireless data traffic has increased significantly due to the rapid growth of smart terminals and evolving real-time technologies. With the dramatic growth of data traffic, the existing cellular networks including Fifth-Generation (5G) networks cannot fully meet the increasingly rising data rate requirements. The Sixth-Generation (6G) mobile network is expected to achieve the high data rate requirements of new transmission technologies and spectrum. This paper presents the radio channel measurements to study the channel characteristics of 6G networks in the 107–109 GHz band in three different industrial environments. The path loss, K-factor, and time dispersion parameters are investigated. Two popular path loss models for indoor environments, the close-in free space reference distance (CI) and floating intercept (FI), are used to examine the path loss. The mean excess delay (MED) and root mean squared delay spread (RMSDS) are used to investigate the time dispersion of the channel. The path loss results show that the CI and FI models fit the measured data well in all industrial settings with a path loss exponent (PLE) of 1.6–2. The results of the K-factor show that the high value in industrial environments at the sub-6 GHz band still holds well in our measured environments at a high frequency band above 100 GHz. For the time dispersion parameters, it is found that most of the received signal energy falls in the early delay bins. This work represents a first step to establish the feasibility of using 6G networks operating above 100 GHz for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document