Error accumulation effect in Xsens based manipulator teleoperation

Author(s):  
Tomasz Grzejszczak ◽  
Adam Galuszka ◽  
Natalia Bartosiak ◽  
Martyna Wojnar
2006 ◽  
Author(s):  
Xiaoang Irene Wan ◽  
Ranxiao Frances Wang ◽  
James A. Crowell

2015 ◽  
Vol 44 (9) ◽  
pp. 1264-1269
Author(s):  
Jin-Seon Yook ◽  
Suk-Heung Oh ◽  
Su-Gon Kim ◽  
Jo-Seph Lee ◽  
Eun-Gyung Mun ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4910
Author(s):  
Xiaoqiao Yuan ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Xiaokai Wei ◽  
...  

Rotation modulation (RM) has been widely used in navigation systems to significantly improve the navigation accuracy of inertial navigation systems (INSs). However, the traditional single-axis rotation modulation cannot achieve the modulation of all the constant errors in the three directions; thus, it is not suitable for application in highly dynamic environments due to requirements for high precision in missiles. Aiming at the problems of error accumulation and divergence in the direction of rotation axis existing in the traditional single-axis rotation modulation, a novel rotation scheme is proposed. Firstly, the error propagation principle of the new rotation modulation scheme is analyzed. Secondly, the condition of realizing the error modulation with constant error is discussed. Finally, the original rotation modulation navigation algorithm is optimized for the new rotation modulation scheme. The experiment and simulation results show that the new rotation scheme can effectively modulate the error divergence of roll angle and improve the accuracy of roll angle by two orders of magnitude.


Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C219-C227 ◽  
Author(s):  
Hanjie Song ◽  
Yingjie Gao ◽  
Jinhai Zhang ◽  
Zhenxing Yao

The approximation of normal moveout is essential for estimating the anisotropy parameters of the transversally isotropic media with vertical symmetry axis (VTI). We have approximated the long-offset moveout using the Padé approximation based on the higher order Taylor series coefficients for VTI media. For a given anellipticity parameter, we have the best accuracy when the numerator is one order higher than the denominator (i.e., [[Formula: see text]]); thus, we suggest using [4/3] and [7/6] orders for practical applications. A [7/6] Padé approximation can handle a much larger offset and stronger anellipticity parameter. We have further compared the relative traveltime errors between the Padé approximation and several approximations. Our method shows great superiority to most existing methods over a wide range of offset (normalized offset up to 2 or offset-to-depth ratio up to 4) and anellipticity parameter (0–0.5). The Padé approximation provides us with an attractive high-accuracy scheme with an error that is negligible within its convergence domain. This is important for reducing the error accumulation especially for deeper substructures.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-33
Author(s):  
Jingjing Wang ◽  
Wenjun Jiang ◽  
Kenli Li ◽  
Keqin Li

CANDECOMP/PARAFAC (CP) decomposition is widely used in various online social network (OSN) applications. However, it is inefficient when dealing with massive and incremental data. Some incremental CP decomposition (ICP) methods have been proposed to improve the efficiency and process evolving data, by updating decomposition results according to the newly added data. The ICP methods are efficient, but inaccurate because of serious error accumulation caused by approximation in the incremental updating. To promote the wide use of ICP, we strive to reduce its cumulative errors while keeping high efficiency. We first differentiate all possible errors in ICP into two types: the cumulative reconstruction error and the prediction error. Next, we formulate two optimization problems for reducing the two errors. Then, we propose several restarting strategies to address the two problems. Finally, we test the effectiveness in three typical dynamic OSN applications. To the best of our knowledge, this is the first work on reducing the cumulative errors of the ICP methods in dynamic OSNs.


Sign in / Sign up

Export Citation Format

Share Document