CA2 area detection from hippocampal microscope images using deep learning

Author(s):  
Shohei Morinaga ◽  
Tomoe Ishikawa ◽  
Masato Yasui ◽  
Mototsugu Hamada ◽  
Tadahiro Kuroda
2019 ◽  
Vol 31 (2) ◽  
pp. 025201 ◽  
Author(s):  
Lewis R B Picard ◽  
Manfred J Mark ◽  
Francesca Ferlaino ◽  
Rick van Bijnen

2020 ◽  
Vol 20 (2020) ◽  
pp. 416-417
Author(s):  
Caio Marcellos ◽  
Amaro Gomes Barreto Jr ◽  
Juliana Braga Rodrigues Loureiro ◽  
Elvis do Amaral Soares ◽  
Danilo Naiff ◽  
...  

2018 ◽  
Vol 15 (11) ◽  
pp. 868-870 ◽  
Author(s):  
Roger Brent ◽  
Laura Boucheron

2018 ◽  
Author(s):  
Jianxu Chen ◽  
Liya Ding ◽  
Matheus P. Viana ◽  
HyeonWoo Lee ◽  
M. Filip Sluezwski ◽  
...  

A continuing challenge in quantitative cell biology is the accurate and robust 3D segmentation of structures of interest from fluorescence microscopy images in an automated, reproducible, and widely accessible manner for subsequent interpretable data analysis. We describe the Allen Cell and Structure Segmenter (Segmenter), a Python-based open source toolkit developed for 3D segmentation of cells and intracellular structures in fluorescence microscope images. This toolkit brings together classic image segmentation and iterative deep learning workflows first to generate initial high-quality 3D intracellular structure segmentations and then to easily curate these results to generate the ground truths for building robust and accurate deep learning models. The toolkit takes advantage of the high-replicate 3D live cell image data collected at the Allen Institute for Cell Science of over 30 endogenous fluorescently tagged human induced pluripotent stem cell (hiPSC) lines. Each cell line represents a different intracellular structure with one or more distinct localization patterns within undifferentiated hiPS cells and hiPSC-derivedcardiomyocytes. The Segmenter consists of two complementary elements, a classic image segmentation workflow with a restricted set of algorithms and parameters and an iterative deep learning segmentation workflow. We created a collection of 20 classic image segmentation workflows based on 20 distinct and representative intracellular structure localization patterns as a "lookup table" reference and starting point for users. The iterative deep learning workflow can take over when the classic segmentation workflow is insufficient. Two straightforward "human-in-the loop" curation strategies convert a set of classic image segmentation workflow results into a set of 3D ground truth images for iterative model training without the need for manual painting in 3D. The deep learning model architectures used in this toolkit were designed and tested specifically for 3D fluorescence microscope images and implemented as readable scripts. The Segmenter thus leverages state of the art computer vision algorithms in an accessible way to facilitate their application by the experimental biology researcher. We include two useful applications to demonstrate how we used the classic image segmentation and iterative deep learning workflows to solve more challenging 3D segmentation tasks. First, we introduce the "Training Assay" approach, a new experimental-computational co-design concept to generate more biologically accurate segmentation ground truths. We combined the iterative deep learning workflow with three Training Assays to develop a robust, scalable cell and nuclear instance segmentation algorithm, which could achieve accurate target segmentation for over 98% of individual cells and over 80% of entire fields of view. Second, we demonstrate how to extend the lamin B1 segmentation model built from the iterative deep learning workflow to obtain more biologically accurate lamin B1 segmentation by utilizing multi-channel inputs and combining multiple ML models. The steps and workflows used to develop these algorithms are generalizable to other similar segmentation challenges. More information, including tutorials and code repositories, are available at allencell.org/segmenter.


2021 ◽  
Vol 58 (11) ◽  
pp. 684-696
Author(s):  
P. Krawczyk ◽  
A. Jansche ◽  
T. Bernthaler ◽  
G. Schneider

Abstract Image-based qualitative and quantitative structural analyses using high-resolution light microscopy are integral parts of the materialographic work on materials and components. Vibrations or defocusing often result in blurred image areas, especially in large-scale micrographs and at high magnifications. As the robustness of the image-processing analysis methods is highly dependent on the image grade, the image quality directly affects the quantitative structural analysis. We present a deep learning model which, when using appropriate training data, is capable of increasing the image sharpness of light microscope images. We show that a sharpness correction for blurred images can successfully be performed using deep learning, taking the examples of steels with a bainitic microstructure, non-metallic inclusions in the context of steel purity degree analyses, aluminumsilicon cast alloys, sintered magnets, and lithium-ion batteries. We furthermore examine whether geometric accuracy is ensured in the artificially resharpened images.


2019 ◽  
Author(s):  
Alexandre H. Aono ◽  
James S. Nagai ◽  
Gabriella da S. M. Dickel ◽  
Rafaela C. Marinho ◽  
Paulo E. A. M. de Oliveira ◽  
...  

AbstractStomata are morphological structures of plants that have been receiving constant attention. These pores are responsible for the interaction between the internal plant system and the environment, working on different processes such as photosynthesis process and transpiration stream. As evaluated before, understanding the pore mechanism play a key role to explore the evolution and behavior of plants. Although the study of stomata in dicots species of plants have advanced, there is little information about stomata of cereal grasses. In addition, automated detection of these structures have been presented on the literature, but some gaps are still uncovered. This fact is motivated by high morphological variation of stomata and the presence of noise from the image acquisition step. Herein, we propose a new methodology of an automatic stomata classification and detection system in microscope images for maize cultivars. In our experiments, we have achieved an approximated accuracy of 97.1% in the identification of stomata regions using classifiers based on deep learning features.


Sign in / Sign up

Export Citation Format

Share Document