Increasing the Image Sharpness of Light Microscope Images Using Deep Learning

2021 ◽  
Vol 58 (11) ◽  
pp. 684-696
Author(s):  
P. Krawczyk ◽  
A. Jansche ◽  
T. Bernthaler ◽  
G. Schneider

Abstract Image-based qualitative and quantitative structural analyses using high-resolution light microscopy are integral parts of the materialographic work on materials and components. Vibrations or defocusing often result in blurred image areas, especially in large-scale micrographs and at high magnifications. As the robustness of the image-processing analysis methods is highly dependent on the image grade, the image quality directly affects the quantitative structural analysis. We present a deep learning model which, when using appropriate training data, is capable of increasing the image sharpness of light microscope images. We show that a sharpness correction for blurred images can successfully be performed using deep learning, taking the examples of steels with a bainitic microstructure, non-metallic inclusions in the context of steel purity degree analyses, aluminumsilicon cast alloys, sintered magnets, and lithium-ion batteries. We furthermore examine whether geometric accuracy is ensured in the artificially resharpened images.

2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Tao Chen ◽  
Mingfen Wu ◽  
Hexi Li

Abstract The automatic extraction of meaningful relations from biomedical literature or clinical records is crucial in various biomedical applications. Most of the current deep learning approaches for medical relation extraction require large-scale training data to prevent overfitting of the training model. We propose using a pre-trained model and a fine-tuning technique to improve these approaches without additional time-consuming human labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from Transformers (BERT), an approach for pre-training a model on large-scale unstructured text. We then combine BERT with a one-dimensional convolutional neural network (1d-CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments on three datasets, namely the BioCreative V chemical disease relation corpus, traditional Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus, show that the proposed approach achieves state-of-the-art results (giving a relative improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a traditional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/MedicalRelationExtraction.


Author(s):  
Tony Lindeberg

AbstractThis paper presents a hybrid approach between scale-space theory and deep learning, where a deep learning architecture is constructed by coupling parameterized scale-space operations in cascade. By sharing the learnt parameters between multiple scale channels, and by using the transformation properties of the scale-space primitives under scaling transformations, the resulting network becomes provably scale covariant. By in addition performing max pooling over the multiple scale channels, or other permutation-invariant pooling over scales, a resulting network architecture for image classification also becomes provably scale invariant. We investigate the performance of such networks on the MNIST Large Scale dataset, which contains rescaled images from the original MNIST dataset over a factor of 4 concerning training data and over a factor of 16 concerning testing data. It is demonstrated that the resulting approach allows for scale generalization, enabling good performance for classifying patterns at scales not spanned by the training data.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laila Rasmy ◽  
Yang Xiang ◽  
Ziqian Xie ◽  
Cui Tao ◽  
Degui Zhi

AbstractDeep learning (DL)-based predictive models from electronic health records (EHRs) deliver impressive performance in many clinical tasks. Large training cohorts, however, are often required by these models to achieve high accuracy, hindering the adoption of DL-based models in scenarios with limited training data. Recently, bidirectional encoder representations from transformers (BERT) and related models have achieved tremendous successes in the natural language processing domain. The pretraining of BERT on a very large training corpus generates contextualized embeddings that can boost the performance of models trained on smaller datasets. Inspired by BERT, we propose Med-BERT, which adapts the BERT framework originally developed for the text domain to the structured EHR domain. Med-BERT is a contextualized embedding model pretrained on a structured EHR dataset of 28,490,650 patients. Fine-tuning experiments showed that Med-BERT substantially improves the prediction accuracy, boosting the area under the receiver operating characteristics curve (AUC) by 1.21–6.14% in two disease prediction tasks from two clinical databases. In particular, pretrained Med-BERT obtains promising performances on tasks with small fine-tuning training sets and can boost the AUC by more than 20% or obtain an AUC as high as a model trained on a training set ten times larger, compared with deep learning models without Med-BERT. We believe that Med-BERT will benefit disease prediction studies with small local training datasets, reduce data collection expenses, and accelerate the pace of artificial intelligence aided healthcare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simon Müller ◽  
Christina Sauter ◽  
Ramesh Shunmugasundaram ◽  
Nils Wenzler ◽  
Vincent De Andrade ◽  
...  

AbstractAccurate 3D representations of lithium-ion battery electrodes, in which the active particles, binder and pore phases are distinguished and labeled, can assist in understanding and ultimately improving battery performance. Here, we demonstrate a methodology for using deep-learning tools to achieve reliable segmentations of volumetric images of electrodes on which standard segmentation approaches fail due to insufficient contrast. We implement the 3D U-Net architecture for segmentation, and, to overcome the limitations of training data obtained experimentally through imaging, we show how synthetic learning data, consisting of realistic artificial electrode structures and their tomographic reconstructions, can be generated and used to enhance network performance. We apply our method to segment x-ray tomographic microscopy images of graphite-silicon composite electrodes and show it is accurate across standard metrics. We then apply it to obtain a statistically meaningful analysis of the microstructural evolution of the carbon-black and binder domain during battery operation.


2021 ◽  
Author(s):  
Geoffrey F. Schau ◽  
Hassan Ghani ◽  
Erik A. Burlingame ◽  
Guillaume Thibault ◽  
Joe W. Gray ◽  
...  

AbstractAccurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic origin. Although deep learning models require significant training data to learn effectively, transfer learning paradigms provide mechanisms to circumvent limited training data by first training a model on related data prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between primary and metastatic tumors of various indications on patch-level images to highlight limitations of our indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.


Author(s):  
Zhuang Liu ◽  
Degen Huang ◽  
Kaiyu Huang ◽  
Zhuang Li ◽  
Jun Zhao

There is growing interest in the tasks of financial text mining. Over the past few years, the progress of Natural Language Processing (NLP) based on deep learning advanced rapidly. Significant progress has been made with deep learning showing promising results on financial text mining models. However, as NLP models require large amounts of labeled training data, applying deep learning to financial text mining is often unsuccessful due to the lack of labeled training data in financial fields. To address this issue, we present FinBERT (BERT for Financial Text Mining) that is a domain specific language model pre-trained on large-scale financial corpora. In FinBERT, different from BERT, we construct six pre-training tasks covering more knowledge, simultaneously trained on general corpora and financial domain corpora, which can enable FinBERT model better to capture language knowledge and semantic information. The results show that our FinBERT outperforms all current state-of-the-art models. Extensive experimental results demonstrate the effectiveness and robustness of FinBERT. The source code and pre-trained models of FinBERT are available online.


2021 ◽  
Vol 13 (24) ◽  
pp. 5094
Author(s):  
Li Shen ◽  
Yao Lu ◽  
Hao Chen ◽  
Hao Wei ◽  
Donghai Xie ◽  
...  

Building-change detection underpins many important applications, especially in the military and crisis-management domains. Recent methods used for change detection have shifted towards deep learning, which depends on the quality of its training data. The assembly of large-scale annotated satellite imagery datasets is therefore essential for global building-change surveillance. Existing datasets almost exclusively offer near-nadir viewing angles. This limits the range of changes that can be detected. By offering larger observation ranges, the scroll imaging mode of optical satellites presents an opportunity to overcome this restriction. This paper therefore introduces S2Looking, a building-change-detection dataset that contains large-scale side-looking satellite images captured at various off-nadir angles. The dataset consists of 5000 bitemporal image pairs of rural areas and more than 65,920 annotated instances of changes throughout the world. The dataset can be used to train deep-learning-based change-detection algorithms. It expands upon existing datasets by providing (1) larger viewing angles; (2) large illumination variances; and (3) the added complexity of rural images. To facilitate the use of the dataset, a benchmark task has been established, and preliminary tests suggest that deep-learning algorithms find the dataset significantly more challenging than the closest-competing near-nadir dataset, LEVIR-CD+. S2Looking may therefore promote important advances in existing building-change-detection algorithms.


2021 ◽  
Author(s):  
Benjamin Kellenberger ◽  
Thor Veen ◽  
Eelke Folmer ◽  
Devis Tuia

&lt;p&gt;Recently, Unmanned Aerial Vehicles (UAVs) equipped with high-resolution imaging sensors have become a viable alternative for ecologists to conduct wildlife censuses, compared to foot surveys. They cause less disturbance by sensing remotely, they provide coverage of otherwise inaccessible areas, and their images can be reviewed and double-checked in controlled screening sessions. However, the amount of data they generate often makes this photo-interpretation stage prohibitively time-consuming.&lt;/p&gt;&lt;p&gt;In this work, we automate the detection process with deep learning [4]. We focus on counting coastal seabirds on sand islands off the West African coast, where species like the African Royal Tern are at the top of the food chain [5]. Monitoring their abundance provides invaluable insights into biodiversity in this area [7]. In a first step, we obtained orthomosaics from nadir-looking UAVs over six sand islands with 1cm resolution. We then fully labelled one of them with points for four seabird species, which required three weeks for five annotators to do and resulted in over 21,000 individuals. Next, we further labelled the other five orthomosaics, but in an incomplete manner; we aimed for a low number of only 200 points per species. These points, together with a few background polygons, served as training data for our ResNet-based [2] detection model. This low number of points required multiple strategies to obtain stable predictions, including curriculum learning [1] and post-processing by a Markov random field [6]. In the end, our model was able to accurately predict the 21,000 birds of the test image with 90% precision at 90% recall (Fig. 1) [3]. Furthermore, this model required a mere 4.5 hours from creating training data to the final prediction, which is a fraction of the three weeks needed for the manual labelling process. Inference time is only a few minutes, which makes the model scale favourably to many more islands. In sum, the combination of UAVs and machine learning-based detectors simultaneously provides census possibilities with unprecedentedly high accuracy and comparably minuscule execution time.&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.bc5211f4f60067568601161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=eeda7238e992b9591c2fec19197f67dc&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;em&gt;Fig. 1: Our model is able to predict over 21,000 birds in high-resolution UAV images in a fraction of time compared to weeks of manual labelling.&lt;/em&gt;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;1. Bengio, Yoshua, et al. &quot;Curriculum learning.&quot; Proceedings of the 26th annual international conference on machine learning. 2009.&lt;/p&gt;&lt;p&gt;2. He, Kaiming, et al. &quot;Deep residual learning for image recognition.&quot; Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.&lt;/p&gt;&lt;p&gt;3. Kellenberger, Benjamin, et al. &amp;#8220;21,000 Birds in 4.5 Hours: Efficient Large-scale Seabird Detection with Machine Learning.&amp;#8221; Remote Sensing in Ecology and Conservation. Under review.&lt;/p&gt;&lt;p&gt;4. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. &quot;Deep learning.&quot; nature 521.7553 (2015): 436-444.&lt;/p&gt;&lt;p&gt;5. Parsons, Matt, et al. &quot;Seabirds as indicators of the marine environment.&quot; ICES Journal of Marine Science 65.8 (2008): 1520-1526.&lt;/p&gt;&lt;p&gt;6. Tuia, Devis, Michele Volpi, and Gabriele Moser. &quot;Decision fusion with multiple spatial supports by conditional random fields.&quot; IEEE Transactions on Geoscience and Remote Sensing 56.6 (2018): 3277-3289.&lt;/p&gt;&lt;p&gt;7. Veen, Jan, Hanneke Dallmeijer, and Thor Veen. &quot;Selecting piscivorous bird species for monitoring environmental change in the Banc d'Arguin, Mauritania.&quot; Ardea 106.1 (2018): 5-18.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document