A Novel 24-GHz Air-filled Cavity-backed Slot Antenna Array with Out-of-phase Power Divider for Automotive Radar System

Author(s):  
Ningning Yan ◽  
Kaixue Ma ◽  
Yun He ◽  
Ze Jian
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guang Sun ◽  
Ge Gao ◽  
Tingting Liu ◽  
Yi Liu ◽  
Hu Yang

In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.


Author(s):  
Guoshuai Zhang ◽  
Kaixue Ma ◽  
Haipeng Fu ◽  
Ningning Yan ◽  
Yu Luo

Author(s):  
Ahmed Abdellatif ◽  
Massoud Ghassemi ◽  
Mohammad-Reza Nezhad-Ahmadi ◽  
Safieddin Safavi-Naeini ◽  
Nasser Ghassemi

Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


2011 ◽  
Vol 179-180 ◽  
pp. 1342-1345
Author(s):  
Ping Chuan Zhang ◽  
Li Min Hou ◽  
Bu Yin Li

Passive radar based on GSM is a hot research field of new illuminators passive radars, and the wave arrival direction estimation is the key problem for detecting target. This paper designed adaptive antenna array for the GSM passive radar system, and give the complete Matlab simulation to verify the execution of the schedule, meanwhile, the result shows that the MUSIC algorithms is high accurate in the wave arrival direction compared with the Capon. All of this made a useful contribution to the research and application of the GSM-based passive radar.


Sign in / Sign up

Export Citation Format

Share Document