High-resolution optical coherence tomography (OCT) imaging of human kidney ex vivo

Author(s):  
Anik Duttaroy ◽  
Andrew Paek ◽  
Maristela Onozato ◽  
Bobak Shirmahamoodi ◽  
James Jiang ◽  
...  
2016 ◽  
Vol 20 (5) ◽  
pp. 607-613
Author(s):  
Yeh-Chan Ahn ◽  
Chulho Oak ◽  
Jung-Eun Park ◽  
Min-Jung Jung ◽  
Jae-Hun Kim ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 69 (2) ◽  
pp. 430-439 ◽  
Author(s):  
Marlon S. Mathews ◽  
Jianping Su ◽  
Esmaeil Heidari ◽  
Elad I. Levy ◽  
Mark E. Linskey ◽  
...  

Abstract BACKGROUND: Intravascular optical coherence tomography (OCT) is a recently developed optical imaging technique that provides high-resolution cross-sectional in situ images from intact tissue based on tissue reflectance of near-infrared or infrared light. OBJECTIVE: To report on the feasibility of neuroendovascular OCT imaging and compare the neuroendovascular OCT findings with histology in nondiseased vessels in an animal, cadaveric, and clinical study. METHODS: Catheter-based in vivo endovascular OCT imaging was performed in the common carotid arteries of 2 pigs and in the intracranial carotid arteries of 3 patients. The endovascular OCT device was delivered to the desired location via groin access and using standard endovascular procedures. Images were obtained via rotational and translational scanning using external motors. In vivo findings were reproduced using ex vivo OCT imaging in corresponding animal and human (cadaveric) harvested tissue segments. These segments underwent histological examination for comparison. RESULTS: The structural compositions of the OCT-imaged segments of the common carotid arteries in pigs as well as the petrous and cavernous intracranial carotid arteries in patients were visualized at high resolution (8 μm). The in vivo images were identical to those obtained ex vivo, demonstrating the imaging capabilities of the endovascular OCT device. The OCT images correlated well with the images obtained after histological sectioning and visualized in vivo the laminar vascular structure. CONCLUSION: Neuroendovascular OCT imaging is feasible for clinical use and can detect with high resolution the structure of arterial segments. Understanding OCT imaging in nondiseased arteries is important in establishing baseline findings necessary for interpreting pathological processes. This allows neuroendovascular optical biopsies of vascular tissue to be obtained without the need for excision and processing.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Bhoite ◽  
H Jinnouchi ◽  
F Otsuka ◽  
Y Sato ◽  
A Sakamoto ◽  
...  

Abstract Background In many studies, struts coverage is defined as >0 mm of tissue overlying the stent struts by optical coherence tomography (OCT). However, this definition has never been validated using histology as the “gold standard”. The present study sought to assess the appropriate cut-off value of neointimal thickness of stent strut coverage by OCT using histology. Methods OCT imaging was performed on 39 human coronary arteries with stents from 25 patients at autopsy. A total of 165 cross-sectional images from 46 stents were co-registered with histology. The optimal cut-off value of strut coverage by OCT was determined. Strut coverage by histology was defined as endothelial cells with at least underlying two layers of smooth muscle cells. Considering the resolution of OCT is 10–20 μm, 3 different cut-off values (i.e. at ≥20, ≥40, and ≥60 μm) were assessed. Results A total of 2235 struts were evaluated by histology. Eventually, 1216 struts which were well-matched struts were analyzed in this study. By histology, uncovered struts were observed in 160 struts and covered struts were observed in 1056 struts. The broadly used definition of OCT-coverage which does not consider neointimal thickness yielded a poor specificity of 37.5% and high sensitivity 100%. Of 3 cut-off values, the cut-off value of >40 μm was more accurate as compared to >20 and >60 mm [sensitivity (99.3%), specificity (91.0%), positive predictive value (98.6%), and negative predictive value (95.6%)] Conclusion The most accurate cut-off value was ≥40 μm neointimal thickness by OCT in order to identify stent strut coverage validated by histology. Funding Acknowledgement Type of funding source: None


2016 ◽  
Vol 33 ◽  
Author(s):  
DIANE R. NAVA ◽  
BHAVNA ANTONY ◽  
LI ZHANG ◽  
MICHAEL D. ABRÀMOFF ◽  
CHRISTINE F. WILDSOET

AbstractStudies into the mechanisms underlying the active emmetropization process by which neonatal refractive errors are corrected, have described rapid, compensatory changes in the thickness of the choroidal layer in response to imposed optical defocus. While high frequency A-scan ultrasonography, as traditionally used to characterize such changes, offers good resolution of central (on-axis) changes, evidence of local retinal control mechanisms make it imperative that more peripheral, off-axis changes also be tracked. In this study, we used in vivo high resolution spectral domain-optical coherence tomography (SD-OCT) imaging in combination with the Iowa Reference Algorithms for 3-dimensional segmentation, to more fully characterize these changes, both spatially and temporally, in young, 7-day old chicks (n = 15), which were fitted with monocular +15 D defocusing lenses to induce choroidal thickening. With these tools, we were also able to localize the retinal area centralis, which was used as a landmark along with the ocular pectin in standardizing the location of scans and aligning them for subsequent analyses of choroidal thickness (CT) changes across time and between eyes. Values were derived for each of four quadrants, centered on the area centralis, and global CT values were also derived for all eyes. Data were compared with on-axis changes measured using ultrasonography. There were significant on-axis choroidal thickening that was detected after just one day of lens wear (∼190 µm), and regional (quadrant-related) differences in choroidal responses were also found, as well as global thickness changes 1 day after treatment. The ratio of global to on-axis choroidal thicknesses, used as an index of regional variability in responses, was also found to change significantly, reflecting the significant central changes. In summary, we demonstrated in vivo high resolution SD-OCT imaging, used in combination with segmentation algorithms, to be a viable and informative approach for characterizing regional (spatial), time-sensitive changes in CT in small animals such as the chick.


2011 ◽  
Vol 2 (8) ◽  
pp. 2372 ◽  
Author(s):  
Nicusor Iftimia ◽  
Sevdenur Cizginer ◽  
Vikram Deshpande ◽  
Martha Pitman ◽  
Servet Tatli ◽  
...  

2005 ◽  
Vol 10 (1) ◽  
pp. 011006 ◽  
Author(s):  
Kostadinka Bizheva ◽  
Angelika Unterhuber ◽  
Boris Hermann ◽  
Boris Považay ◽  
Harald Sattmann ◽  
...  

2014 ◽  
Vol 07 (02) ◽  
pp. 1350064 ◽  
Author(s):  
Peter M. Andrews ◽  
Hsing-Wen Wang ◽  
Jeremiah Wierwille ◽  
Wei Gong ◽  
Jennifer Verbesey ◽  
...  

Acute tubular necrosis (ATN) induced by ischemia is the most common insult to donor kidneys destined for transplantation. ATN results from swelling and subsequent damage to cells lining the kidney tubules. In this study, we demonstrate the capability of optical coherence tomography (OCT) to image the renal microstructures of living human donor kidneys and potentially provide a measure to determine the extent of ATN. We also found that Doppler-based OCT (i.e., DOCT) reveals renal blood flow dynamics that is another major factor which could relate to post-transplant renal function. All OCT/DOCT observations were performed in a noninvasive, sterile and timely manner on intact human kidneys both prior to (ex vivo) and following (in vivo) their transplantation. Our results indicate that this imaging model provides transplant surgeons with an objective visualization of the transplant kidneys prior and immediately post transplantation.


2020 ◽  
Vol 132 (6) ◽  
pp. 1907-1913 ◽  
Author(s):  
Anne E. Carolus ◽  
Marcel Lenz ◽  
Martin Hofmann ◽  
Hubert Welp ◽  
Kirsten Schmieder ◽  
...  

OBJECTIVEBecause of their complex topography, long courses, and small diameters, peripheral nerves are challenging structures for radiological diagnostics. However, imaging techniques in the area of peripheral nerve diseases have undergone unexpected development in recent decades. They include MRI and high-resolution sonography (HRS). Yet none of those imaging techniques reaches a resolution comparable to that of histological sections. Fascicles are the smallest discernable structure. Optical coherence tomography (OCT) is the first imaging technique that is able to depict a nerve’s ultrastructure at micrometer resolution. In the current study, the authors present an in vivo assessment of human peripheral nerves using OCT.METHODSOCT measurement was performed in 34 patients with different peripheral nerve pathologies, i.e., nerve compression syndromes. The nerves were examined during surgery after their exposure. Only the sural nerve was twice examined ex vivo. The Thorlabs OCT systems Callisto and Ganymede were used. For intraoperative use, a hand probe was covered with a sterile foil. Different postprocessing imaging techniques were applied and evaluated. In order to highlight certain structures, five texture parameters based on gray-level co-occurrence matrices were calculated according to Haralick.RESULTSThe intraoperative use of OCT is easy and intuitive. Image artifacts are mainly caused by motion and the sterile foil. If the artifacts are kept at a low level, the hyporeflecting bundles of nerve fascicles and their inner parts can be displayed. In the Haralick evaluation, the second angular moment is most suitable to depict the connective tissue.CONCLUSIONSOCT is a new imaging technique that has shown promise in peripheral nerve surgery for particular questions. Its resolution exceeds that provided by recent radiological possibilities such as MRI and HRS. Since its field of view is relatively small, faster acquisition times would be highly desirable and have already been demonstrated by other groups. Currently, the method resembles an optical biopsy and can be a supplement to intraoperative sonography, giving high-resolution insight into a suspect area that has been located by sonography in advance.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15518-15518
Author(s):  
C. S. Lee ◽  
M. Mishail ◽  
W. C. Waltzer ◽  
J. Liu ◽  
Z. Wang ◽  
...  

15518 Background: Optical coherence tomography (OCT) is a novel tool that permits high-resolution cross-sectional imaging of bladder urothelium during cystoscopy. OCT delineates morphological features of the bladder urothelium, the lamina propria, and the muscularis layer based on their backscattering patterns. We hypothesize that application of microelectromechanical systems (MEMS) mirrors for OCT can improve cross-sectional image resolution of bladder lesions. We report preliminary results from our prospective non-randomized study using MEMS mirror OCT imaging during cystoscopy. Methods: Following our institutional IRB approval, a prospective correlative study was performed evaluating the role of cross-sectional OCT in diagnosis and treatment of bladder cancers. OCT cystoscopy was performed in thirty patients undergoing cystoscopy or transurethral resection for suspected bladder tumors. Any suspicious lesions or tumors seen on cystoscopy were either biopsied or resected as per standard of care. The primary endpoints were patient safety and the correlation between OCT images and histology. Results: Bladder cancer was identified in twenty five patients by pathological evaluation. Twenty four out of twenty five patients were correctly diagnosed with cross-sectional OCT imaging. Four out of five patients with benign lesions were correctly identified. There was one false positive and one false negative in our series. Overall sensitivity and specificity of cross-sectional OCT in diagnosing bladder cancer was 96 and 80%, respectively. There were no complications related to OCT cystoscopy. Axial and lateral resolutions were 10 and 12 microns, respectively. The field of view was measured at 4.5 mm with the depth of penetration measured to be 2 mm. Conclusions: OCT cystoscopy is a promising new tool in diagnosis of bladder cancer. Our preliminary data suggests OCT with MEMS mirrors resulted in high resolution images that may aid in the diagnosis of bladder cancer during cystoscopy. Application of OCT cross sectional imaging may have additional benefits: improved diagnosis, identification of surgical margins, and more complete resection of bladder tumors. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document