Arc-Detector: Design of a CdTe photon-counting detector for the X-ray Pair Distribution Function beamline at Diamond Light Source

Author(s):  
E. N. Gimenez ◽  
P. A. Chater ◽  
G. Crevatin ◽  
G. Dennis ◽  
A. Fairley ◽  
...  
2021 ◽  
Vol 28 (2) ◽  
pp. 602-608
Author(s):  
Jae-Hee Jeong ◽  
Cheolsoo Eo ◽  
Hyo-Yun Kim ◽  
Jin-Hong Kim ◽  
Chae-Soon Lee ◽  
...  

BL-5C is an in-vacuum undulator beamline dedicated to macromolecular crystallography (MX) at the 3 GeV Pohang Light Source II in Korea. The beamline delivers X-ray beams with a focal spot size of 200 µm × 40 µm (FWHM, H × V) over the energy range 6.5–16.5 keV. The measured flux is 7 × 1011 photons s−1 at 12.659 keV through an aperture size of 50 µm. The experimental station is newly equipped with the photon-counting detector EIGER 9M, the multi-axis micro-diffractometer MD2, and a robotic sample changer with a high-capacity dewar. These instruments enable the operation of this beamline as an automated MX beamline specialized in X-ray fragment screening. This beamline can collect more than 400 data sets a day without human intervention, and a difference map can be automatically calculated by using the data processing pipeline for ligand or fragment identification.


2016 ◽  
Author(s):  
John P. Sutter ◽  
Philip A. Chater ◽  
Michael R. Hillman ◽  
Dean S. Keeble ◽  
Matt G. Tucker ◽  
...  

2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Seungyeol Lee ◽  
Huifang Xu ◽  
Hongwu Xu ◽  
Joerg Neuefeind

The crystal structure of moganite from the Mogán formation on Gran Canaria has been re-investigated using high-resolution synchrotron X-ray diffraction (XRD) and X-ray/neutron pair distribution function (PDF) analyses. Our study for the first time reports the anisotropic atomic displacement parameters (ADPs) of a natural moganite. Rietveld analysis of synchrotron XRD data determined the crystal structure of moganite with the space group I2/a. The refined unit-cell parameters are a = 8.7363(8), b = 4.8688(5), c = 10.7203(9) Å, and β = 90.212(4)°. The ADPs of Si and O in moganite were obtained from X-ray and neutron PDF analyses. The shapes and orientations of the anisotropic ellipsoids determined from X-ray and neutron measurements are similar. The anisotropic ellipsoids for O extend along planes perpendicular to the Si-Si axis of corner-sharing SiO4 tetrahedra, suggesting precession-like movement. Neutron PDF result confirms the occurrence of OH over some of the tetrahedral sites. We postulate that moganite nanomineral is stable with respect to quartz in hypersaline water. The ADPs of moganite show a similar trend as those of quartz determined by single-crystal XRD. In short, the combined methods can provide high-quality structural parameters of moganite nanomineral, including its ADPs and extra OH position at the surface. This approach can be used as an alternative means for solving the structures of crystals that are not large enough for single-crystal XRD measurements, such as fine-grained and nanocrystalline minerals formed in various geological environments.


2018 ◽  
Vol 233 (6) ◽  
pp. 361-370 ◽  
Author(s):  
Anna-Lena Hansen ◽  
Bastian Dietl ◽  
Martin Etter ◽  
Reinhard K. Kremer ◽  
David C. Johnson ◽  
...  

Abstract Results of combined synchrotron X-ray diffraction and pair distribution function experiments performed on the layered compound CrTe3 provide evidence for a short range structural distortion of one of the two crystallographically independent CrTe6 octahedra. The distortion is caused by higher mobility of one crystallographically distinct Te ion, leading to an unusual large Debye Waller factor. In situ high temperature X-ray diffraction investigations show an initial crystallization of a minor amount of elemental Te followed by decomposition of CrTe3 into Cr5Te8 and Te. Additional experiments provide evidence that the Te impurity (<1%) cannot be avoided. Analyses of structural changes in the temperature range 100–754 K show a pronounced anisotropic expansion of the lattice parameters. The differing behavior of the crystal axes is explained on the basis of structural distortions of the Cr4Te16 structural building units. An abrupt distortion of the structure occurs at T≈250 K, which then remains nearly constant down to 100 K. The structural distortion affects the spin exchange interactions between Cr3+ cations. A significant splitting between field-cooled (fc) and zero-field-cooled (zfc) magnetic susceptibility is observed below about 200 K. Applying a small external magnetic field results in a substantial spontaneous magnetization, reminiscent of ferro- or ferrimagnet exchange interactions below ~240 K. A Debye temperature of ~150 K was extracted from heat capacity measurements.


Sign in / Sign up

Export Citation Format

Share Document