The Management and Optimization of Queue State Vector Based on Multi-core

Author(s):  
Wu Haitao ◽  
Xu Yakun
Keyword(s):  
1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2018 ◽  
Vol 15 (1) ◽  
pp. 12-22
Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article reviewed and analyzed the class of geometrically stable orbits (GUO). The conditions of stability in the model of the geopotential, taking into account the zonal harmonics. The sequence of calculation of the state vector of GUO in the osculating value of the argument of the latitude with the famous Ascoli-royski longitude of the ascending node, inclination and semimajor axis. The simulation is obtained the altitude profiles of SEE regarding the all-earth ellipsoid model of the gravitational field of the Earth given 7 and 32 zonal harmonics.


2019 ◽  
pp. 105-107
Author(s):  
A. S. Busygin ◽  
А. V. Shumov

The paper considers a method for simulating the flight of a multistage rocket in Matlab using Simulink software for control and guidance. The model takes into account the anisotropy of the gravity of the Earth, changes in the pressure and density of the atmosphere, piecewise continuous change of the center of mass and the moment of inertia of the rocket during the flight. Also, the proposed model allows you to work out various targeting options using both onboard and ground‑based information tools, to load information from the ground‑based radar, with imitation of «non‑ideality» of incoming target designations as a result of changes in the accuracy of determining coordinates and speeds, as well as signal fluctuations. It is stipulated that the design is variable not only by the number of steps, but also by their types. The calculations are implemented in a matrix form, which allows parallel operations in each step of processing a multidimensional state vector of the simulated object.


Author(s):  
Ravish H. Hirpara ◽  
Shambhu N. Sharma

This paper revisits the state vector of an autonomous underwater vehicle (AUV) dynamics coupled with the underwater Markovian stochasticity in the ‘non-linear filtering’ context. The underwater stochasticity is attributed to atmospheric turbulence, planetary interactions, sea surface conditions and astronomical phenomena. In this paper, we adopt the Itô process, a homogeneous Markov process, to describe the AUV state vector evolution equation. This paper accounts for the process noise as well as observation noise correction terms by considering the underwater filtering model. The non-linear filtering of the paper is achieved using the Kolmogorov backward equation and the evolution of the conditional characteristic function. The non-linear filtering equation is the cornerstone formalism of stochastic optimal control systems. Most notably, this paper introduces the non-linear filtering theory into an underwater vehicle stochastic system by constructing a lemma and a theorem for the underwater vehicle stochastic differential equation that were not available in the literature.


Sign in / Sign up

Export Citation Format

Share Document