Adaptive series-virtual-impedance control strategy for load converters to improve the stability of the cascaded system

Author(s):  
Xin Zhang ◽  
Qing-Chang Zhong ◽  
Wen-Long Ming
2019 ◽  
Vol 9 (15) ◽  
pp. 3184 ◽  
Author(s):  
Yuye Li ◽  
Kaipei Liu ◽  
Xiaobing Liao ◽  
Shu Zhu ◽  
Qing Huai

It is a common practice that one converter controls DC voltage and the other controls power in two-terminal voltage source converter (VSC)–based high voltage DC (HVDC) systems for AC gird interconnection. The maximum transmission power from a DC-voltage-controlled converter to a power-controlled converter is less than that of the opposite transmission direction. In order to increase the transmission power from a DC-voltage-controlled converter to a power-controlled converter, an improved virtual impedance control strategy is proposed in this paper. Based on the proposed control strategy, the DC impedance model of the VSC–HVDC system is built, including the output impedance of two converters and DC cable impedance. The stability of the system with an improved virtual impedance control is analyzed in Nyquist stability criterion. The proposed control strategy can improve the transmission capacity of the system by changing the DC output impedance of the DC voltage-controlled converter. The effectiveness of the proposed control strategy is verified by simulation. The simulation results show that the proposed control strategy has better dynamic performance than traditional control strategies.


2019 ◽  
Vol 34 (6) ◽  
pp. 5854-5866 ◽  
Author(s):  
Xin Zhang ◽  
Qing-Chang Zhong ◽  
Visakan Kadirkamanathan ◽  
Jinsong He ◽  
Jingjing Huang

2021 ◽  
Vol 11 (1) ◽  
pp. 6620-6625 ◽  
Author(s):  
E. Pathan ◽  
M. H. Khan ◽  
H. Arshad ◽  
M. K. Aslam ◽  
D. Jahangir ◽  
...  

The future of power systems depends on the microgrid (MG) which includes distribution generators utilizing Renewable Energy Resources (RERs) and storage facilities. Decentralized control techniques are more reliable and stable in comparison with centralized controlled techniques. In this paper, a decentralized control strategy is presented for an islanded AC MG system. The control strategy includes improved droop control and virtual impedance. Control strategy with PI controllers to control the voltage and current is implemented to two Voltage Source Inverter (VSI) distribution generation units connected in parallel through a Point of Common Coupling (PCC). Circulating current and power-sharing deviations caused by the mismatched line impedance were taken into account. The proposed control scheme was tested in MATLAB/Simulink. Power-sharing accuracy and circulating current suppression were obtained by implementing the proposed virtual impedance-based decentralized control strategy.


2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


2013 ◽  
Vol 28 (11) ◽  
pp. 5272-5282 ◽  
Author(s):  
Jinwei He ◽  
Yun Wei Li ◽  
Josep M. Guerrero ◽  
Frede Blaabjerg ◽  
Juan C. Vasquez

Sign in / Sign up

Export Citation Format

Share Document