2021 ◽  
Author(s):  
Md. Ziaur Rahman

The objective of this project is to determine the total annual energy summary in terms of cost and Greenhouse Gas (GHG) emission of 16 buildings at Ryerson University (RU). In addition, the Deep Lake Water Cooling (DLWC) feasibility analysis of RU is another objective of this project in terms of total energy consumption and amount of gas emission reduction. The total audit area of RU was 86% of the total campus area. Building energy simulation program, Carrier HAP (Hourly Analysis Program), has been used to make an integrated evaluation of building energy consumption. An energy simulation involves hour-by-hour calculations for all 8,760 hours in a year. In this project, an energy audit was conducted for the 16 existing buildings to establish the base case model, "Ryerson University", to determine its annual energy consumption across all usage. There are two sources of energy used at RU. Electricity uses for lighting, plug load, miscellaneous and cooling, and remote steam is used for cooling and heating. For the base case model, total energy consumption was 251 TJ. To reduce the total energy consumption of the base case model, HVAC systems were investigated to analyze their energy-based performance and impact on the GHG emission. There is no Heat Recovery Ventilation (HRV) system coming from the investigation of HVAC system. The sensitivity analysis was conducted using HRV system with air system. By using HRV system with air system, total of 5.6% energy would be saved for cooling and 76% energy would be saved for heating of RU. The energy intensity was determined to be 1.04 GJ/m² only for 16 buildings of RU and comparatively it is lower than other universities in Canada which have a range of 1.64 GJ/m² to 2.26 GJ/m². In the DLWC system, cool lake water at 4°C was used for building air conditioning. To reduce the cooling energy costs, DLWC system was considered as an alternative chilled water source. The Rogers Business Building (RBB) already has DLWC system. For DLWC system, chilled water was served by Enwave to the RBB. According to base case analysis of the RBB with conventional chillers, the electricity consumption was 924594 kWh for RBB due to chillers. With the implementation of DLWC system for the rest of the 15 buildings, total energy saving due to cooling would be 89.2% and GHG emission reduction would be 89% for CO₂, 70% for NOx and 70.4% for SOx due to elimination of chillers.


2021 ◽  
Author(s):  
Md. Ziaur Rahman

The objective of this project is to determine the total annual energy summary in terms of cost and Greenhouse Gas (GHG) emission of 16 buildings at Ryerson University (RU). In addition, the Deep Lake Water Cooling (DLWC) feasibility analysis of RU is another objective of this project in terms of total energy consumption and amount of gas emission reduction. The total audit area of RU was 86% of the total campus area. Building energy simulation program, Carrier HAP (Hourly Analysis Program), has been used to make an integrated evaluation of building energy consumption. An energy simulation involves hour-by-hour calculations for all 8,760 hours in a year. In this project, an energy audit was conducted for the 16 existing buildings to establish the base case model, "Ryerson University", to determine its annual energy consumption across all usage. There are two sources of energy used at RU. Electricity uses for lighting, plug load, miscellaneous and cooling, and remote steam is used for cooling and heating. For the base case model, total energy consumption was 251 TJ. To reduce the total energy consumption of the base case model, HVAC systems were investigated to analyze their energy-based performance and impact on the GHG emission. There is no Heat Recovery Ventilation (HRV) system coming from the investigation of HVAC system. The sensitivity analysis was conducted using HRV system with air system. By using HRV system with air system, total of 5.6% energy would be saved for cooling and 76% energy would be saved for heating of RU. The energy intensity was determined to be 1.04 GJ/m² only for 16 buildings of RU and comparatively it is lower than other universities in Canada which have a range of 1.64 GJ/m² to 2.26 GJ/m². In the DLWC system, cool lake water at 4°C was used for building air conditioning. To reduce the cooling energy costs, DLWC system was considered as an alternative chilled water source. The Rogers Business Building (RBB) already has DLWC system. For DLWC system, chilled water was served by Enwave to the RBB. According to base case analysis of the RBB with conventional chillers, the electricity consumption was 924594 kWh for RBB due to chillers. With the implementation of DLWC system for the rest of the 15 buildings, total energy saving due to cooling would be 89.2% and GHG emission reduction would be 89% for CO₂, 70% for NOx and 70.4% for SOx due to elimination of chillers.


2021 ◽  
Vol 593 ◽  
pp. 125886
Author(s):  
Yike Li ◽  
Lide Tian ◽  
Gabriel J. Bowen ◽  
Qinglong Wu ◽  
Wenlei Luo ◽  
...  

2021 ◽  
Vol 16 (09) ◽  
pp. C09001
Author(s):  
E. Ryabov ◽  
B. Tarashansky

Author(s):  
José Artur Ramos ◽  
Keyword(s):  
The Self ◽  
Set Up ◽  

The essay Tracing the Traces of our Face concerns the relationship between the drawing, the self-portrait and the image in the mirror. This is accomplished following some ideas exposed in Bachelard's The wather an d the dreams (L'Eau et les Rêves) where the mirroring on still water is put up into debate. The present paper tries to explore a concept of self-portrait departing of Bachelard’s notion of naturalization of the image. In this way it is set up the idea that the drawing self-portrait can be an action that gives back natural presence to identity, which was lost in a too much artificial and fixed world. So, drawing dissolves the image with such a naturality as if it was deep lake water.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

Sign in / Sign up

Export Citation Format

Share Document