Electricity generation and transmission expansion under uncertainty in natural gas supply

Author(s):  
H. Rudnick
2022 ◽  
Vol 9 ◽  
Author(s):  
Tao Zhang ◽  
Hua Bai ◽  
Shuyu Sun

Natural gas has been attracting increasing attentions all around the world as a relatively cleaner energy resource compared with coal and crude oil. Except for the direct consumption as fuel, electricity generation is now another environmentally-friendly utilization of natural gas, which makes it more favorable as the energy supply for urban areas. Pipeline transportation is the main approach connecting the natural gas production field and urban areas thanks to the safety and economic reasons. In this paper, an intelligent pipeline dispatch technique is proposed using deep learning methods to predict the change of energy supply to the urban areas as a consequence of compressor operations. Practical operation data is collected and prepared for the training and validation of deep learning models, and the accelerated predictions can help make controlling plans regarding compressor operations to meet the requirement in urban natural gas supply. The proposed deep neutral network is equipped with self-adaptability, which enables the general adaption on various temporal compressor conditions including failure and maintenance.


1974 ◽  
Vol 13 (4) ◽  
pp. 481-484
Author(s):  
J. Faaland ◽  
J. R. Parkinson

The World Bank Study," Water and Power Resources of West Pakistan" [1], is one of the most thorough-going and sophisticated of its type. In re¬reading it we have been struck by a curious argument related to the real benefits to be expected from the construction of the Tarbela dam. It was designed to produce electricity as well as to irrigate land and it was necessary to estimate the benefits that the electricity would confer. One way of doing this was to estimate the saving that would be made by using hydro-power instead of natural gas or imported fuel, for electricity generation. This meant that an appropriate set of prices had to be estimated for Pakistan's supply of natural gas. The way in which this was done was, to say the least, unusual. The relevant passage justi¬fying the approach adopted is as follows:


2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


2019 ◽  
pp. 64-72
Author(s):  
G.G. Arunyants

The results of analysis of problems of regulation of gas supply complex of Kaliningrad region and main ways to increase its efficiency, as well as basic solutions for creation of a software complex Т-GAZ-2 automated calculation of natural gas tariffs for ACS of gas supply system subjects, geographically distributed and information connected to the regional automated information and control system (RAIS).


2010 ◽  
Vol 3 (4) ◽  
pp. 31-64 ◽  
Author(s):  
Marte Fodstad ◽  
Kristin Tolstad Uggen ◽  
Frode Rømo ◽  
Arnt-Gunnar Lium ◽  
Geert Stremersch

Author(s):  
Hikmet Ibrahimov ◽  
Sara Malikli ◽  
Zenfira Ibrahimova ◽  
Rahim Babali ◽  
Sevinc Aleskerova

Abstractγ-Al2O3 was synthesized by the Sol–gel method, Ni (NO3)2 was placed in the pores by the impregnation method, and Ni-γ-Al2O3 was obtained by pyrolysis in a hydrogen stream in a CVD device. By the method of chemical vapors phase deposition (CVD) on Ni-Al2O3 catalytic converter with decomposition of methane in the natural gas produced carbon nanotubes (CNT) (Chunduri et al. in Mater Express 4(3):235–241, 2014; Zhou et al. in Appl Catal B 208:44–59, 2017). The catalytic activity of the catalysts in methane decomposition was examined from 650 °C to 900 °C by the method of chemical vapors phase deposition (CVD), the yield of CNTs tends to increase with the growth at the ratio of natural gas supply to hydrogen. The specific surface increases with an increase of nickel content and can reach 265.5 m2/g for a sample of 2% Ni-A12O3 at 850 °C. Growth at the temperature of methane decomposition leads to reduction in its specific surface. It has been established that the use of the Ni-Cu/γ-Al2O3 catalytic system, in which copper acts as a stabilizing additive, makes it possible to double the maximum yield of the carbon product during the decomposition of natural gas.


Sign in / Sign up

Export Citation Format

Share Document