Low cost energy optimized control strategy for a variable speed three-phase induction motor

Author(s):  
H.R. Andersen ◽  
J.K. Pedersen
Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Jamal Abd Ali ◽  
M A Hannan ◽  
Azah Mohamed

Optimization techniques are increasingly used in research to improve the control of three-phase induction motor (TIM). Indirect field-oriented control (IFOC) scheme is employed to improve the efficiency and enhance the performance of variable speed control of TIM drives. The space vector pulse width modulation (SVPWM) technique is used for switching signals in a three-phase bridge inverter to minimize harmonics in the output signals of the inverter. In this paper, a novel scheme based on particle swarm optimization (PSO) algorithm is proposed to improve the variable speed control of IFOC in TIM. The PSO algorithm is used to search the best values of parameters of proportional-integral (PI) controller (proportional gain (kp) and integral gain (ki)) for each speed controller and voltage controller to improve the speed response for TIM. An optimal PI controller-based objective function is also used to tune and minimize the mean square error (MSE). Results of all tests verified the robustness of the PSO-PI controller for speed response in terms of damping capability, fast settling time, steady state error, and transient responses under different conditions of mechanical load and speed.


Author(s):  
Anmar Kh. Ali ◽  
Riyadh G. Omar

In this, work the finite control set (FCS) model predictive direct current control strategy with constraints, is applied to drive three-phase induction motor (IM) using the well-known field-oriented control. As a modern algorithm approach of control, this kind of algorithm decides the suitable switching combination that brings the error between the desired command currents and the predicated currents, as low as possible, according to the process of optimization. The suggested algorithm simulates the constraints of maximum allowable current and the accepted deviation, between the desired command and actual currents. The new constraints produce an improvement in system performance, with the predefined error threshold. This can be applied by avoiding the switching combination that exceeds the limited values. The additional constraints are more suitable for loads that require minimum distortion in harmonic and offer protection from maximum allowable currents. This approach is valuable especially in electrical vehicle (EV) applications since its result offers more reliable system performance with low total harmonics distortion (THD), low motor torque ripple, and better speed tracking.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


2013 ◽  
Vol 569-570 ◽  
pp. 481-488
Author(s):  
Jin Jiang Wang ◽  
Robert X. Gao ◽  
Ru Qiang Yan

This paper presents a new approach for bearing defect diagnosis in induction motor by taking advantage of three-phase stator current analysis based on Concordia transform. The current signature caused by bearing defect is firstly analyzed using an analytic model. Concordia transform is performed to extract the instantaneous frequency based on phase demodulation. The bearing defect feature is then identified via spectrum analysis of the variation of current instantaneous frequency. Both simulation and experimental studies are performed to demonstrate the effectiveness of proposed method in identifying bearing defects. The method is inherently low cost, non-invasive, and computational efficient, making it a good candidate for various applications.


2013 ◽  
Vol 433-435 ◽  
pp. 1154-1160
Author(s):  
Wen Shao Bu ◽  
Cong Lin Zu ◽  
Chun Xiao Lu ◽  
Xin Wen Niu

For the strong coupling problem of three-phase bearingless induction motor which is a multi- variable and nonlinear object, a kind of decoupling control strategy based on inverse system method is proposed. The reversibility of torque subsystem was analyzed based on rotor flux orientation, and the decoupling control strategy based on inverse system method was analyzed. Then the torque system was decoupled into two second-order linear subsystems, i.e. the rotor speed subsystems and the rotor flux subsystems. The suspension system adopts negative feedback control; the required air-gap flux linkage of torque system was obtained from the rotor flux and stator current. Finally, synthesis and simulation of the overall control system were researched. Simulation results demonstrate that good performance of decoupling control can be achieved. The presented control strategy is feasible and available.


Sign in / Sign up

Export Citation Format

Share Document