High gain antenna characteristics for 300 GHz band fixed wireless communication systems

Author(s):  
H. Sawada ◽  
A. Kanno ◽  
N. Yamamoto ◽  
K. Fujii ◽  
A. Kasamatsu ◽  
...  
Author(s):  
Soukaina Sekkal ◽  
Laurent Canale ◽  
Mariam El Gharbi ◽  
Adel Asselman

In this work, a new flexible antenna integrated with OLED light sources is presented for WiMAX wireless communication systems. The proposed antenna was placed on a 100% polyester base with a thickness of 1.5 mm and achieved a high gain. We evaluated and tested its performance, including reflection coefficient, radiation pattern and gain. The flexible and simple patch antenna has been designed to operate at 3.5 GHz for WiMAX wireless communication systems with a gain value of 5.38 dB. This article proves the applicability of the proposed material for the integration of flexible antennas in OLEDs while maintaining gain performance similar to conventional flat antennas.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Ge ◽  
Xujun Yang ◽  
Zheng Dong ◽  
Dengguo Zhang ◽  
Xierong Zeng

Magneto-electric (ME) dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.


Sign in / Sign up

Export Citation Format

Share Document