Thermal Simulation of 3-D Stacked Integrated Circuits with Layered Finite Element Method

Author(s):  
Bo Li ◽  
Min Tang ◽  
Yuwen Zhi ◽  
Huixian Yu
2003 ◽  
Vol 30 (6) ◽  
pp. 1153-1156 ◽  
Author(s):  
Y L Chen ◽  
C J Wang ◽  
S Y Li ◽  
L J Chen

In this paper a numerical simulation of the construction process of roller compacted concrete (RCC) dams is presented. The following features of construction of mass concrete have been considered: hydration heat, age, placing temperature, starting placement date, and placing speed. A 3-D finite element model of the Long-Tan RCC dam, which is to be built in the Guangxi Autonomous Region in China, was analyzed. Temperature distribution and evolution inside the RCC dam were calculated during and after the completion of the dam. Using FortranTM code, a 3-D thermal simulation analysis of a high RCC dam can be realized on a computer at the construction site. Based on the real factors during the construction period, engineers can predict the distribution of temperature in the RCC dam. Therefore, engineers can take appropriate measures to control concrete temperature to reduce thermal stress within the dam. The effects of the concrete placing temperature, construction speed, and starting date on the temperature are discussed. It has been found that the maximum temperature in a dam can be reduced by 20% through temperature control measures.Key words: RCC dam, thermal simulation analysis, finite element method, temperature field, construction schedule.


Author(s):  
Ahcene Lakhlef ◽  
Arezki Benfdila ◽  
Lounas Belhimer

<span>Propagation delays and couplings between nearby lines affect the circuit performances (speed, power consumption) and operations. Propagation delays in longer lines can become critical compared to the clock frequency and can induce unwanted signals in neighboring lines ("crosstalk" phenomenon). Induced line capacitances can induce parasitic signals. Hence characterizing of these capacitances is of paramount importance. The present work deals with the analysis of capacitance of a multilayer conductor interconnect aiming for their possible exact extraction. We used three topologies of a microstrip conductor interconnects and identified the potential distributor and then computed the capacitance and inductance matrix using a finite element method. The first analysis dealt with parallel microstrip conductors and the second with two levels (plan) of a microstrip conductors the results are compared to those obtained by other methods and found quite encouraging.</span>


Sign in / Sign up

Export Citation Format

Share Document