Modeling of RF energy scavenging for batteryless wireless sensors with low input power

Author(s):  
Yan Wu ◽  
Jean-Paul Linnartz ◽  
Hao Gao ◽  
Marion K. Matters-Kammerer ◽  
Peter Baltus
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 173450-173462
Author(s):  
Kyrillos K. Selim ◽  
Shaochuan Wu ◽  
Demyana A. Saleeb

Author(s):  
Pankaj Agrawal ◽  
Akhilesh Tiwari ◽  
Uday Pratap Singh

Due to growing demand of energy, green technologies are highly attractive among researchers because of their non-conventional nature. Energy harvesting is one of their best parts. Very low cost of maintenance and non-polluting nature are major reasons behind their growing demand. However, for ultra-low power applications, such as in wireless sensor devices, the energy scavenging from RF signal is another alternative. In the last few years, a great interest has been seen in microwave power scavenging for charging wireless devices. This chapter presents a RF energy harvesting circuit with tuned π-matching network that resonates at desired incident RF frequency to boost these signals. Various computer intelligent techniques have been used to optimize parameters value of matching circuit. The designed circuit has been analyzed for input power range from -30 dBm to 0 dBm. Approximately 80% maximum PCE is achieved at RF input of 0 dBm with 4 KΩ load. It is also demonstrated that better output power is produced for power range -15 dBm to 0 dBm at higher load values.


Author(s):  
Ahmed Al-Khayari ◽  
Hamed Al-Khayari ◽  
Sulaiman Al-Nabhani ◽  
Mohammed M. Bait-Suwailam ◽  
Zia Nadir

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2772 ◽  
Author(s):  
Husam Hamid Ibrahim ◽  
Mandeep S. J. Singh ◽  
Samir Salem Al-Bawri ◽  
Mohammad Tariqul Islam

The investigation into new sources of energy with the highest efficiency which are derived from existing energy sources is a significant research area and is attracting a great deal of interest. Radio frequency (RF) energy harvesting is a promising alternative for obtaining energy for wireless devices directly from RF energy sources in the environment. An overview of the energy harvesting concept will be discussed in detail in this paper. Energy harvesting is a very promising method for the development of self-powered electronics. Many applications, such as the Internet of Things (IoT), smart environments, the military or agricultural monitoring depend on the use of sensor networks which require a large variety of small and scattered devices. The low-power operation of such distributed devices requires wireless energy to be obtained from their surroundings in order to achieve safe, self-sufficient and maintenance-free systems. The energy harvesting circuit is known to be an interface between piezoelectric and electro-strictive loads. A modern view of circuitry for energy harvesting is based on power conditioning principles that also involve AC-to-DC conversion and voltage regulation. Throughout the field of energy conversion, energy harvesting circuits often impose electric boundaries for devices, which are important for maximizing the energy that is harvested. The power conversion efficiency (PCE) is described as the ratio between the rectifier’s output DC power and the antenna-based RF-input power (before its passage through the corresponding network).


2019 ◽  
Vol 28 (03) ◽  
pp. 1950048 ◽  
Author(s):  
Mohamed Mokhlès Mnif ◽  
Hassene Mnif ◽  
Mourad Loulou

The energy-harvesting radio frequency (RF) can be an attractive alternative energy capable of replacing all or some of the board batteries. The RF waves are present in several high frequencies ([Formula: see text] GHz) and at low power (a few [Formula: see text]W). An energy-harvesting circuit designed must provide 1[Formula: see text]V voltage at minimum that is able to operate an actuator or a sensor. The RF-DC rectifier is the main component of an energy-harvesting circuit. This paper presents a new design RF-DC rectifier circuit using the MOSFET transistors, the capacitors and the inductors. Our proposed circuit is a combination of an Inductor–Capacitor–Inductor–Capacitor (LCLC) serie-parallel resonant tank (SPRT) and rectifier cascade using the Dynamic threshold Voltage Cancellation (DVC) and the technique of the Internal threshold Voltage Cancellation (IVC). Our proposed circuit operates in dual frequencies [Formula: see text][Formula: see text]GHz and [Formula: see text][Formula: see text]GHz with a low input power [Formula: see text][Formula: see text][Formula: see text]W ([Formula: see text][Formula: see text]dbm) and [Formula: see text][Formula: see text][Formula: see text]W ([Formula: see text][Formula: see text]dbm), respectively. This circuit gives a Power Conversion Efficiency (PCE) of 56.9% and an output voltage [Formula: see text][Formula: see text]V for the frequency 2.543[Formula: see text]GHz and a PCE of 62.6% and an output voltage [Formula: see text][Formula: see text]V for the frequency 4[Formula: see text]GHz. The pre-layout simulations were performed using the Advanced Design System (ADS) and the technology used is CMOS 0.18[Formula: see text][Formula: see text]m from TSMC. The simulations were performed on the proposed circuit composed by three stages.


Sign in / Sign up

Export Citation Format

Share Document