An Improved Control Strategy for DFIG fed Wind Turbine against Symmetrical Voltage Dip

Author(s):  
Sonam Gupta ◽  
Anup Shukla
2013 ◽  
Vol 291-294 ◽  
pp. 467-471
Author(s):  
Yan Feng Meng ◽  
Shu Ju Hu ◽  
Hong Hua Xu

Aiming at operation problems of DFIG under grid fault condition, the improved control strategy of coordinating control rotor converter and Crowbar circuit switching logic for enhancing LVRT ability is proposed. The over-current cause on the stator and rotor of DFIG under grid fault is analyzed and complete improved control strategy flow chart is given during entire voltage dip. Experimental verification results show that adopting this improved control strategy can effectively suppress the generator stator and rotor over-current and over-voltage, enhance wind turbine operation ability, and provide important theoretical basis and reference for large-scale wind turbine to respond to grid transient fault.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


Author(s):  
Ali Al-Abadi ◽  
YouJin Kim ◽  
Jin-young Park ◽  
Hyunjin Kang ◽  
Özgür Ertunc ◽  
...  

An optimization method that changes the control strategy of the Horizontal Axis Wind Turbine (HAWT) from passive- to active-pitch has been developed. The method aims to keep the rated power constant by adjusting the blade pitch angle while matching the rotor and the drive torques. The method is applied to an optimized wind turbine model. Further, numerical simulations were performed to validate the developed method and for further investigations of the flow behavior over the blades.


2021 ◽  
Vol 13 (6) ◽  
pp. 3235
Author(s):  
J. Enrique Sierra-García ◽  
Matilde Santos

Wind energy plays a key role in the sustainability of the worldwide energy system. It is forecasted to be the main source of energy supply by 2050. However, for this prediction to become reality, there are still technological challenges to be addressed. One of them is the control of the wind turbine in order to improve its energy efficiency. In this work, a new hybrid pitch-control strategy is proposed that combines a lookup table and a neural network. The table and the RBF neural network complement each other. The neural network learns to compensate for the errors in the mapping function implemented by the lookup table, and in turn, the table facilitates the learning of the neural network. This synergy of techniques provides better results than if the techniques were applied individually. Furthermore, it is shown how the neural network is able to control the pitch even if the lookup table is poorly designed. The operation of the proposed control strategy is compared with the neural control without the table, with a PID regulator, and with the combination of the PID and the lookup table. In all cases, the proposed hybrid control strategy achieves better results in terms of output power error.


2010 ◽  
Vol 44-47 ◽  
pp. 1672-1676
Author(s):  
Jing Feng Mao ◽  
Guo Qing Wu ◽  
Ai Hua Wu ◽  
Xu Dong Zhang ◽  
Yang Cao ◽  
...  

This paper presents a theoretical analysis and experimental evaluation of the switched reluctance generator (SRG) for off-grid variable-speed wind energy applications. The detailed model, control parameters and operational characteristics of the SRG as well as variable-speed wind turbine are discussed. In order to drive the wind energy conversion system (WECS) to the point of maximum aerodynamic efficiency, a SRG power output feedback control strategy which optimized angle position-current chopping control cooperating PI regulator is proposed. The control strategy is also demonstrated by means of Matlab/Simulink. Moreover, an experimental test system is set up, which a cage induction machine is used to emulate the variable-speed wind turbine. The experimental results validate the proposed control strategy and confirm the SRG performance.


Sign in / Sign up

Export Citation Format

Share Document