Applications of electrically conductive yarns in technical textiles

Author(s):  
P. C. Patel ◽  
D. A. Vasavada ◽  
H. R. Mankodi
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


2011 ◽  
Vol 462-463 ◽  
pp. 18-23 ◽  
Author(s):  
P. Xue ◽  
Xiao Ming Tao ◽  
Keun Hoo Park

In this study, electrical conductive yarns were prepared by wet-spinning technique and a physically coating process. Carbon black (CB) was used to make the fiber gaining electrical conductivity. The electrical conductivity and morphological characteristics of the developed conductive fibres were studied and compared. The results show that linear resistivity of the produced conductive yarns ranges from 1 to a few hundred kΩ per centimeter, mainly depending on processing technique and substrate fibers. It is also shown that the physically coating processes will not significantly affect the mechanical properties of the fibers and yarns. These conductive yarns are lightweight, durable, flexible, and cost competitive; and able to be crimped and subjected to textile processing without any difficulty.


2015 ◽  
Vol 27 (1) ◽  
pp. 34-46 ◽  
Author(s):  
Inese Parkova ◽  
Ivars Parkovs ◽  
Ausma Vilumsone

Purpose – Flexible light-emitting textile display is designed with floats for electronic elements covering and electronic contacts insulation what at the same time provides an opportunity to develop aesthetic design of the display in the single piece construction of material. The paper aims to discuss these issues. Design/methodology/approach – Display consists of interwoven electrically conductive yarns, non-conductive yarns and SMD LEDs connected to conductive yarns. Industrial jacquard weaving machine have been used, weave patterns were designed in PC-Edit software. Findings – Weave can be used as a tool to build and evolve electrotextile. Exploring weaving techniques and perceiving electronic circuit as a weave pattern, new approaches can be developed in electrotextile design field. Research limitations/implications – Connections of electronic elements and conductive textile materials still is actual problem what should be explored in further research. Practical implications – Flexible light emitting textile display can be used as output interface integrated into communication clothing by representing different animated images directly on clothing. Display also can be used for accessories, room and auto interior etc. applications. Originality/value – Paper describes method of light source integration directly into textile structure, combining functional and visual design of textile display.


2008 ◽  
Vol 60 ◽  
pp. 58-63 ◽  
Author(s):  
Laura Jiménez ◽  
A.M. Rocha ◽  
I. Aranberri ◽  
José A. Covas ◽  
A.P. Catarino

The main objective of this work is to develop conductive yarns to be used as electrical wiring in e-textiles with the typical mechanical properties of a textile yarn. Present work deals with the study of conductive polymer composites filaments of PP (polypropylene) with CB (carbon black), carbon black of high conductivity (CBHC) and CF (carbon fibers) .The novelty of this work resides in creating oriented filaments using traditional fiber processing techniques together with a specially designed drafting machine. In the authors’ opinion, the composite conductivity could be improved with the orientation of the (nano)carbon-based fillers by melt drawing after extrusion in order to facilitate the flow channels creation.


2018 ◽  
Vol 762 ◽  
pp. 396-401 ◽  
Author(s):  
Natalija Baribina ◽  
Ilze Baltina ◽  
Alexander Oks

The conductive yarn is an essential component of the smart textile making the product light and comfortable to wear. Nevertheless, one of the most common problems is care that limits the use of the product. Application of additional coating to the yarn renders it water-repellent properties and allows reduction of the negative impact of water on its performance. During the research additional coatings were applied to conductive yarns, with the aim of minimizing electrical resistivity changes caused by washing cycles. Two types of coatings were applied to the yarns, they were washed and tested. The article describes changes in the electrical resistance of different conductors depending on the linear density of the yarn, the type of coating applied and the number of washing cycles. The electrical resistance of electrically conductive yarns increases with washing until they become non-conductive. The electrical resistance of non-textured yarns increases more slowly and the smaller increase is observed in thick yarns. The water-repellent silicone coating applied to yarns reduces the electrical resistance increase rate and the yarns retain their conductivity over more washing cycles.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6780
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6641
Author(s):  
Julie Regnier ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
Eric Devaux

By incorporating electrically conductive yarns into a waterproof membrane, one can detect epoxy resin cracking or liquid leakage. Therefore, this study examined the electrical conductivity variations of several yarns (metallic or carbon-based) for cracking and water detection. The first observations concerned the detectors’ feasibility by investigating their conductivity variations during both their resin implementation processes and their resin cracking. Throughout this experiment, two phenomena were detected: the compression and the separation of the fibres by the resin. In addition, the resin cracking had an important role in decreasing the yarns’ conductivity. The second part of this study concerned water detection. Two principles were established and implemented, first with yarns and then with yarns incorporated into the resin. First, the principle of absorption was based on the conductivity variation with the yarns’ swelling after contact with water. A short circuit was established by the creation of a conductive path when a drop of water was deposited between two conductive, parallel yarns. Through the influence of the yarns’ properties, this study explored the metallic yarns’ capacity to better detect water with a short circuit and the ability of the carbon-based yarns to detect water by the principle of absorption.


MRS Advances ◽  
2016 ◽  
Vol 1 (38) ◽  
pp. 2641-2651 ◽  
Author(s):  
Richard Vallett ◽  
Ryan Young ◽  
Chelsea Knittel ◽  
Youngmoo Kim ◽  
Genevieve Dion

ABSTRACTTextiles, in combination with advances in materials and design, offer exciting new possibilities for human and environmental interaction, including biometric and touch-based sensing. Previous fabric-based or flexible touch sensors have generally required a large number of sensing electrodes positioned in a dense XY grid configuration and a multitude of wires. This paper investigates the design and manufacturing of a planar (two-dimensional, XY location) touch fabric sensor with only two electrodes (wires) to sense both planar touch and pressure, making it ideal for applications with limited space/complexity for wiring. The proposed knitted structure incorporates a supplementary method of sensing to detect human touch on the fabric surface, which offers advantages over previous methods of touch localization through an efficient use of wire connections and sensing materials. This structure is easily manufactured as a single component utilizing flatbed knitting techniques and electrically conductive yarns. The design requires no embedded electronics or solid components in the fabric, which allows the sensor to be flexible and resilient. This paper discusses the design, fabrication, sensing methods, and applications of the fabric sensor in robotics and human-machine interaction, smart garments, and wearables, as well as the highly transdisciplinary approach pursued in developing medical textiles and flexible embedded sensors.


2016 ◽  
Vol 62 (3) ◽  
pp. 51-56 ◽  
Author(s):  
Tetsuhiko MURAKAMI ◽  
Atsuji MASUDA ◽  
Yasuhiro YOSHIDA ◽  
Yoshiyuki IEMOTO ◽  
Hideyuki UEMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document