Copper Electrode on Flexible Substrate by Intense Pulsed Light Sintering of Microsized Copper Particles

Author(s):  
Keming Ren ◽  
Thad Druffel
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-Rae Jang ◽  
Robin Jeong ◽  
Hak-Sung Kim ◽  
Simon S. Park

AbstractAdditively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.


2016 ◽  
Author(s):  
Shalu Bansal ◽  
Chih-Hung Chang ◽  
Rajiv Malhotra

Sintering of nanoparticles deposited onto rigid or flexible substrate is required for many devices that use continuous and patterned thin films. An emerging need in this area is to perform nanoparticle sintering under ambient conditions, at high speeds, and with throughput that is compatible with high speed nanoparticle deposition techniques. Intense Pulsed Light sintering (IPL) uses a high energy, broad area and broad spectrum beam of xenon lamp light to sinter metallic and non-metallic nanoparticles. The capability of IPL to meet the above needs has been demonstrated. This paper experimentally examines temperature evolution and densification during IPL. It is shown, for the first time, that temperature rise and densification in IPL are related to each other. A coupled optical-thermal-sintering model on the nanoscale is developed, to understand this phenomenon. This model is used to show that the change in nanoscale shape of the nanoparticle ensemble due to sintering, reduces the optically induced heating as the densification proceeds, which provides a better explanation of experimental observations as compared to current models of IPL. The implications of this new understanding on the performance of IPL are also discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1518
Author(s):  
Hee-Jeong Hwang ◽  
So-Yoon Yee ◽  
Myong-Soo Chung

Controlling microbial problems when processing seeds and powdered foods is difficult due to their low water activity, irregular surfaces, and opaqueness. Moreover, existing thermal processing can readily cause various undesirable changes in sensory properties. Intense pulsed light (IPL) can be effective in nonthermal processing, and so two xenon lamps were attached to the sides of a self-designed cyclone type of pilot-scale IPL device. Each lamp was connected to its own power supply, and the following treatment conditions were applied to four sample types: lamp DC voltage of 1800–4200 V, pulse width of 0.5–1.0 ms, frequency of 2 Hz, and treatment time of 1–5 min. This device achieved reductions of 0.45, 0.66, and 0.88 log CFU/mL for ground black pepper, red pepper, and embryo buds of rice, respectively, under a total energy fluence of 12.31 J/cm2. Meanwhile, >3-log reductions were achieved for sesame seed samples under a total energy fluence of 11.26 J/cm2. In addition, analyses of color changes, water activity, and moisture content revealed no significant differences between the control and IPL-treated samples. These findings indicate that IPL treatment may be considered a feasible sterilization method for seeds and powdered foods.


Sign in / Sign up

Export Citation Format

Share Document