Notice of Retraction Research of coordinate supply policy of spare parts based on demand inventory

Author(s):  
Fu Su ◽  
Changzheng Qu ◽  
Hongqiang Gu ◽  
Lu Gao
Keyword(s):  
2021 ◽  
Vol 1910 (1) ◽  
pp. 012038
Author(s):  
Junbao Geng ◽  
Shuhuan Wei ◽  
Zhangjian Wei

2019 ◽  
Vol 25 (3) ◽  
pp. 473-487 ◽  
Author(s):  
Yuan Zhang ◽  
Stefan Jedeck ◽  
Li Yang ◽  
Lihui Bai

PurposeDespite the widespread expectation that additive manufacturing (AM) will become a disruptive technology to transform the spare parts supply chain, very limited research has been devoted to the quantitative modeling and analysis on how AM could fulfill the on-demand spare parts supply. On the other hand, the choice of using AM as a spare parts supply strategy over traditional inventory is a rising decision faced by manufacturers and requires quantitative analysis for their AM-or-stock decisions. The purpose of this paper is to develop a quantitative performance model for a generic powder bed fusion AM system in a spare parts supply chain, thus providing insights into this less-explored area in the literature.Design/methodology/approachIn this study, analysis based on a discrete event simulation was carried out for the use of AM in replacement of traditional warehouse inventory for an on-demand spare parts supply system. Generic powder bed fusion AM system was used in the model, and the same modeling approach could be applied to other types of AM processes. Using this model, the impact of both spare parts demand characteristics (e.g. part size attributes, demand rates) and the AM operations characteristics (e.g. machine size and postpone strategy) on the performance of using AM to supply spare parts was studied.FindingsThe simulation results show that in many cases the AM operation is not as cost competitive compared to the traditional warehouse-based spare parts supply operation, and that the spare parts size characteristics could significantly affect the overall performance of the AM operations. For some scenarios of the arrival process of spare parts demand, the use of the batched AM production could potentially result in significant delay in parts delivery, which necessitates further investigations of production optimization strategies.Originality/valueThe findings demonstrate that the proposed simulation tool can not only provide insights on the performance characteristics of using AM in the spare parts supply chain, especially in comparison to the traditional warehousing system, but also can be used toward decision making for both the AM manufacturers and the spare parts service providers.


2019 ◽  
pp. 380-417 ◽  
Author(s):  
Ashley Totin ◽  
Brett Connor

This research examines the spare parts data business models allowing the government to produce parts on demand (i.e., only when required versus long-term warehousing) and at the point-of-need using additive manufacturing. The research includes a survey of acquisition and engineering professionals within government and industry, and an analysis using an aviation case study.


2021 ◽  
Author(s):  
Sastry Yagnanna Kandukuri ◽  
Ole-Bjørn Ellingsen Moe

Abstract Additive manufacturing (AM) makes it possible to produce parts on demand, close to operations, with significantly reduced lead times compared to conventional manufacturing. However, without standardization or guidelines, additively manufactured parts could raise the risk of unexpected or premature failures due to inherent variation of mechanical and metallurgical properties associated with this new technology. This is especially true when the reduced lead time is the desired advantage, where speed may be prioritized over quality. A standardised framework is proposed to free up value locked in physical warehouse inventory and reduce inventory management cost through digital warehousing in a safe and cost-efficient way. Through a joint industry project, with participating companies throughout the entire AM value chain, we propose an assurance framework that answers questions such as: can the digital drawing be available when needed? Can the parts be made ‘first time’ right when needed? Can it be made with the same quality at another location next time? Which party is responsible for the different stages? What requirements should be in place for the companies who wish to manufacture on demand? The digital warehouse assurance framework discussed in this work demonstrates that digital warehousing powered by AM could potentially shorten lead times for sourcing parts and reduce the need for costly storage, maintenance and coordination of spare parts that are rarely used. We also discuss the different variants of digital warehousing we may see, and the roles and responsibilities various digital warehouse stakeholders have for facilitating unambiguous communication. AM is already disrupting supply chains in many other industries, but it is in its infancy in the oil & gas, offshore and maritime sectors as they ponder challenges with intellectual property (IP) and usage rights for original equipment manufacturers (OEM) designs, standardization of technology interfaces and the lack of knowledge and trust of the technology. The digital warehouse quality assurance framework proposed and discussed in this work is unique and has potential to not only accelerate adoption of AM in oil & gas and offshore sectors, but also contribute to a significant reduction of emissions, including greenhouse gases.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 673 ◽  
Author(s):  
Zidong Lin ◽  
Constantinos Goulas ◽  
Wei Ya ◽  
Marcel J.M. Hermans

Wire and arc additive manufacturing (WAAM) is a 3D metal printing technique based on the arc welding process. WAAM is considered to be suitable to produce large-scale metallic components by combining high deposition rate and low cost. WAAM uses conventional welding consumable wires as feedstock. In some applications of steel components, one-off spare parts need to be made on demand from steel grades that do not exist as commercial welding wire. In this research, a specifically produced medium carbon steel (Grade XC-45), metal-cored wire, equivalent to a composition of XC-45 forged material, was deposited with WAAM to produce a thin wall. The specific composition was chosen because it is of particular interest for the on-demand production of heavily loaded aerospace components. The microstructure, hardness, and tensile strength of the deposited part were studied. Fractography studies were conducted on the tested specimens. Due to the multiple thermal cycles during the building process, local variations in microstructural features were evident. Nevertheless, the hardness of the part was relatively uniform from the top to the bottom of the construct. The mean yield/ultimate tensile strength was 620 MPa/817 MPa in the horizontal (deposition) direction and 580 MPa/615 MPa in the vertical (build) direction, respectively. The elongation in both directions showed a significant difference, i.e., 6.4% in the horizontal direction and 11% in the vertical direction. Finally, from the dimple-like structures observed in the fractography study, a ductile fracture mode was determined. Furthermore, a comparison of mechanical properties between WAAM and traditionally processed XC-45, such as casting, forging, and cold rolling was conducted. The results show a more uniform hardness distribution and higher tensile strength of the WAAM deposit using the designed metal-cored wires.


Sign in / Sign up

Export Citation Format

Share Document