scholarly journals Practical applications of i∗ in industry: The state of the art

Author(s):  
Eric Yu ◽  
Daniel Amyot ◽  
Gunter Mussbacher ◽  
Xavier Franch ◽  
Jaelson Castro
Author(s):  
Xiang Kong ◽  
Qizhe Xie ◽  
Zihang Dai ◽  
Eduard Hovy

Mixture of Softmaxes (MoS) has been shown to be effective at addressing the expressiveness limitation of Softmax-based models. Despite the known advantage, MoS is practically sealed by its large consumption of memory and computational time due to the need of computing multiple Softmaxes. In this work, we set out to unleash the power of MoS in practical applications by investigating improved word coding schemes, which could effectively reduce the vocabulary size and hence relieve the memory and computation burden. We show both BPE and our proposed Hybrid-LightRNN lead to improved encoding mechanisms that can halve the time and memory consumption of MoS without performance losses. With MoS, we achieve an improvement of 1.5 BLEU scores on IWSLT 2014 German-to-English corpus and an improvement of 0.76 CIDEr score on image captioning. Moreover, on the larger WMT 2014 machine translation dataset, our MoSboosted Transformer yields 29.6 BLEU score for English-toGerman and 42.1 BLEU score for English-to-French, outperforming the single-Softmax Transformer by 0.9 and 0.4 BLEU scores respectively and achieving the state-of-the-art result on WMT 2014 English-to-German task.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Md Zahangir Alom ◽  
Paheding Sidike ◽  
Mahmudul Hasan ◽  
Tarek M. Taha ◽  
Vijayan K. Asari

In spite of advances in object recognition technology, handwritten Bangla character recognition (HBCR) remains largely unsolved due to the presence of many ambiguous handwritten characters and excessively cursive Bangla handwritings. Even many advanced existing methods do not lead to satisfactory performance in practice that related to HBCR. In this paper, a set of the state-of-the-art deep convolutional neural networks (DCNNs) is discussed and their performance on the application of HBCR is systematically evaluated. The main advantage of DCNN approaches is that they can extract discriminative features from raw data and represent them with a high degree of invariance to object distortions. The experimental results show the superior performance of DCNN models compared with the other popular object recognition approaches, which implies DCNN can be a good candidate for building an automatic HBCR system for practical applications.


Author(s):  
Daniel Rehfeldt ◽  
Thorsten Koch

The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the classic Steiner tree problem in graphs, with a large number of practical applications. It attracted particular interest during the 11th DIMACS Challenge in 2014, and since then, several PCSTP solvers have been introduced in the literature. Although these new solvers further, and often drastically, improved on the results of the DIMACS Challenge, many PCSTP benchmark instances have remained unsolved. The following article describes further advances in the state of the art in exact PCSTP solving. It introduces new techniques and algorithms for PCSTP, involving various new transformations (or reductions) of PCSTP instances to equivalent problems, for example, to decrease the problem size or to obtain a better integer programming formulation. Several of the new techniques and algorithms provably dominate previous approaches. Further theoretical properties of the new components, such as their complexity, are discussed. Also, new complexity results for the exact solution of PCSTP and related problems are described, which form the base of the algorithm design. Finally, the new developments also translate into a strong computational performance: the resulting exact PCSTP solver outperforms all previous approaches, both in terms of runtime and solvability. In particular, it solves several formerly intractable benchmark instances from the 11th DIMACS Challenge to optimality. Moreover, several recently introduced large-scale instances with up to 10 million edges, previously considered to be too large for any exact approach, can now be solved to optimality in less than two hours. Summary of Contribution: The prize-collecting Steiner tree problem (PCSTP) is a well-known generalization of the classic Steiner tree problem in graphs, with many practical applications. The article introduces and analyses new techniques and algorithms for PCSTP that ultimately aim for improved (practical) exact solution. The algorithmic developments are underpinned by results on theoretical aspects, such as fixed-parameter tractability of PCSTP. Computationally, we considerably push the limits of tractibility, being able to solve PCSTP instances with up to 10 million edges. The new solver, which also considerably outperforms the state of the art on smaller instances, will be made publicly available as part of the SCIP Optimization Suite.


2021 ◽  
Vol 14 (6) ◽  
pp. 1040-1052
Author(s):  
Haibo Wang ◽  
Chaoyi Ma ◽  
Olufemi O Odegbile ◽  
Shigang Chen ◽  
Jih-Kwon Peir

Measuring flow spread in real time from large, high-rate data streams has numerous practical applications, where a data stream is modeled as a sequence of data items from different flows and the spread of a flow is the number of distinct items in the flow. Past decades have witnessed tremendous performance improvement for single-flow spread estimation. However, when dealing with numerous flows in a data stream, it remains a significant challenge to measure per-flow spread accurately while reducing memory footprint. The goal of this paper is to introduce new multi-flow spread estimation designs that incur much smaller processing overhead and query overhead than the state of the art, yet achieves significant accuracy improvement in spread estimation. We formally analyze the performance of these new designs. We implement them in both hardware and software, and use real-world data traces to evaluate their performance in comparison with the state of the art. The experimental results show that our best sketch significantly improves over the best existing work in terms of estimation accuracy, data item processing throughput, and online query throughput.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2703 ◽  
Author(s):  
Dambone Sessa ◽  
Chiarelli ◽  
Benato

This work stems from the worldwide increasing need to precisely consider, in the design phase of an HVDC project, the availability of the HVDC system. In this paper, an overview of the availability assessment methods for HVDC-VSC transmission systems is presented. In particular, the state of the art of the procedures to estimate the availability of both the HVDC link reparable components and the conversion system on the basis of the converter configuration is given. The theoretical fundamentals of each method, together with their practical applications, have been described, in order to highlight the limits and the potentialities of each approach. The authors aim at giving a guide to choosing the best computation approach on the basis of the specific needs of the users and at summarizing all the key aspects which can be taken into account during the availability assessment of HVDC-VSC links.


2008 ◽  
Vol 13 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Moshe Zeidner ◽  
Richard D. Roberts ◽  
Gerald Matthews

Almost from its inception, the emotional intelligence (EI) construct has been an elusive one. After nearly 2 decades of research, there still appears to be little consensus over how EI should be conceptualized or assessed and the efficacy of practical applications in real life settings. This paper aims at providing a snapshot of the state-of-the-art in research involving this newly minted construct. Specifically, in separate sections of this article, we set out to distinguish what is known from what is unknown in relation to three paramount concerns of EI research, i.e., conceptualization, assessment, and applications. In each section, we start by discussing assertions that may be made with some degree of confidence, elucidating what are essentially sources of consensus concerning EI. We move then to discuss sources of controversy; those things for which there is less agreement among EI researchers. We hope that this “straight talk” about the current status of EI research will provide a platform for new research in both basic and applied domains.


1991 ◽  
Vol 244 ◽  
Author(s):  
Kurt H. Lösch ◽  
Peter Kersten ◽  
Wiltraud Wischmann

ABSTRACTSince the realization of first polymer channel waveguides in the early 70ths and the market introduction of polymer fibres research work is aiming to increase the integration level of photonic circuits. This paper reports the state of the art in passive and active polymeric integrated optics in view of the requirements for practical applications in telecom and data processing systems.


Author(s):  
Liangxing Hu ◽  
Nan Wang ◽  
Kai Tao

Micro-/nanomotors are self-propelled micro-/nanomachines, which are capable of converting the surrounding fuels into mechanical movement or force. Inspired by naturally occurring biomolecular motor proteins, scientists extensively paid great attentions to synthetic micro-/nanomotors. Especially, a number of researchers devoted their efforts onto catalytic micro-/nanomotors. In the past few decades, several advanced developments and excellent contributions have been made in catalytic micro-/nanomotors. The future of this research field can be bright, but some major existing challenges such as biocompatible materials and fuels, smart controlling, and specifically practical applications are still required to be resolved. Therefore, it is essential for us to learn the state of the art of catalytic micro-/nanomotors. In this chapter, the propulsion mechanisms, fabrication methods, controlling strategies, and potential applications of catalytic micro-/nanomotors are presented and summarized.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Koji Sugioka ◽  
Bo Gu ◽  
Andrew Holmes

AbstractLaser direct-write (LDW) is an established technology for manufacturing electronic and optoelectronic appliances such as cellular telephones, digital cameras, and notebook-type personal computers. One of the most successful applications is laser drilling of via holes on printed circuit boards for the manufacture of cellular telephones. Other practical applications include marking, dicing, trimming, repairing, patterning, bending, and rapid prototyping. In this article, the state of the art of LDW for industrial applications in Japan, the United States, and Europe is reviewed, and its future prospects are discussed.


Author(s):  
Viv Kendon ◽  
Angelika Sebald ◽  
Susan Stepney

Current computational theory deals almost exclusively with single models: classical, neural, analogue, quantum, etc. In practice, researchers use ad hoc combinations, realizing only recently that they can be fundamentally more powerful than the individual parts. A Theo Murphy meeting brought together theorists and practitioners of various types of computing, to engage in combining the individual strengths to produce powerful new heterotic devices. ‘Heterotic computing’ is defined as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This post-meeting collection of articles provides a wide-ranging survey of the state of the art in diverse computational paradigms, together with reflections on their future combination into powerful and practical applications.


Sign in / Sign up

Export Citation Format

Share Document