Identification and Analysis of Dominant Electromigration Failure Modes in Copper/Low-K Dual Damascene Interconnects

Author(s):  
Shou-chung Lee ◽  
Anthony S. Oates
2003 ◽  
Vol 766 ◽  
Author(s):  
Xia Lu ◽  
Ki-Don Lee ◽  
Sean Yoon ◽  
Hideki Matsuhashi ◽  
Michael Lu ◽  
...  

AbstractElectromigration reliability in Cu dual-damascene interconnects with a CVD MSQ low k dielectric was investigated. Statistical studies were carried out using the critical length (LC) test structures containing multi-link line/via elements with varying line lengths. EM lifetime characteristics, critical current density-length product (jL)c, and failure mechanisms were discussed and compared with Cu/oxide structures. Our results suggested that the diffusion at the cap layer interface was the dominant mechanism for EM mass transport. The confinement effect, in terms of an effective modulus B, can be used to account for the shorter EM lifetime and smaller critical current density-length product (jL)c observed for Cu/CVD MSQ low k interconnects. Failure analysis by FIB confirmed the presence of multiple failure modes including voiding at the via bottom, Cu extrusion and delamination at Cu/cap layer interface.


2008 ◽  
Vol 21 (2) ◽  
pp. 256-262 ◽  
Author(s):  
Keizo Kinoshita ◽  
Munehiro Tada ◽  
Masayuki Hiroi ◽  
Kazutoshi Shiba ◽  
Takahiro Onodera ◽  
...  

2000 ◽  
Vol 612 ◽  
Author(s):  
Hisashi Kaneko ◽  
Takamasa Usui ◽  
Sachiyo Ito ◽  
Masahiko Hasunuma

AbstractThe via electromigration(EM) reliability of aluminum(Al) dual-damascene interconnects by using Niobium(Nb) new reflow liner is described. It has been found that the via EM lifetime was improved by introducing low-k organic spin on glass(SOG)-passivated structure than the conventional TEOS-SiO2/SiN-passivated structure. Higher EM activation energy of 1.08 eV was obtained for the SOG-passivated structure than the conventional TEOS-passivated structure of 0.9 eV, even though no significant Al micro-crystal structure difference was found for both structures. It has been turned out that the low-k SOG material has the 1/7 Young's modulus (8 GPa) of TEOS-SiO2 (57 GPa) or thermal SiO2(70 GPa). The small Young's modulus means that SOG is more elastically deformable and/or softer than TEOS or thermal SiO2. This elastic deformation of the low-k SOG could retard the tensile stress evolution due to the Al atom migration near the cathode via, and elongated the time until the Al interconnect tensile stress exceeds the critical stress value for void nucleation. It has been concluded that the small-RC and reliable multi-level Al interconnect can be realized by the Nb-liner reflow-sputtered process with soft and low-k SOG dielectric materials.


Sign in / Sign up

Export Citation Format

Share Document