Factorial Analysis for Evaluating the Effect of Energy Storage on Renewable Energy Accommodation

Author(s):  
Dongmiao Wang ◽  
Siwei Liu ◽  
Zhi An ◽  
Nan Wei ◽  
Changyu Deng ◽  
...  
2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
pp. 0958305X2199229
Author(s):  
Jingyu Qu ◽  
Wooyoung Jeon

Renewable generation sources still have not achieved economic validity in many countries including Korea, and require subsidies to support the transition to a low-carbon economy. An initial Feed-In Tariff (FIT) was adopted to support the deployment of renewable energy in Korea until 2011 and then was switched to the Renewable Portfolio Standard (RPS) to implement more market-oriented mechanisms. However, high volatilities in electricity prices and subsidies under the RPS scheme have weakened investment incentives. In this study we estimate how the multiple price volatilities under the RPS scheme affect the optimal investment decisions of energy storage projects, whose importance is increasing rapidly because they can mitigate the variability and uncertainty of solar and wind generation in the power system. We applied mathematical analysis based on real-option methods to estimate the optimal trigger price for investment in energy-storage projects with and without multiple price volatilities. We found that the optimal trigger price of subsidy called the Renewable Energy Certificate (REC) under multiple price volatilities is 10.5% higher than that under no price volatilities. If the volatility of the REC price gets doubled, the project requires a 26.6% higher optimal investment price to justify the investment against the increased risk. In the end, we propose an auction scheme that has the advantage of both RPS and FIT in order to minimize the financial burden of the subsidy program by eliminating subsidy volatility and find the minimum willingness-to-accept price for investors.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1497
Author(s):  
Chankook Park ◽  
Minkyu Kim

It is important to examine in detail how the distribution of academic research topics related to renewable energy is structured and which topics are likely to receive new attention in the future in order for scientists to contribute to the development of renewable energy. This study uses an advanced probabilistic topic modeling to statistically examine the temporal changes of renewable energy topics by using academic abstracts from 2010–2019 and explores the properties of the topics from the perspective of future signs such as weak signals. As a result, in strong signals, methods for optimally integrating renewable energy into the power grid are paid great attention. In weak signals, interest in large-capacity energy storage systems such as hydrogen, supercapacitors, and compressed air energy storage showed a high rate of increase. In not-strong-but-well-known signals, comprehensive topics have been included, such as renewable energy potential, barriers, and policies. The approach of this study is applicable not only to renewable energy but also to other subjects.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Sign in / Sign up

Export Citation Format

Share Document