scholarly journals A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1497
Author(s):  
Chankook Park ◽  
Minkyu Kim

It is important to examine in detail how the distribution of academic research topics related to renewable energy is structured and which topics are likely to receive new attention in the future in order for scientists to contribute to the development of renewable energy. This study uses an advanced probabilistic topic modeling to statistically examine the temporal changes of renewable energy topics by using academic abstracts from 2010–2019 and explores the properties of the topics from the perspective of future signs such as weak signals. As a result, in strong signals, methods for optimally integrating renewable energy into the power grid are paid great attention. In weak signals, interest in large-capacity energy storage systems such as hydrogen, supercapacitors, and compressed air energy storage showed a high rate of increase. In not-strong-but-well-known signals, comprehensive topics have been included, such as renewable energy potential, barriers, and policies. The approach of this study is applicable not only to renewable energy but also to other subjects.

2021 ◽  
Author(s):  
Alina Walch ◽  
Romain Sibuet ◽  
Roberto Castello ◽  
Jean-Louis Scartezzini

<p>To fulfil ambitious targets for reducing CO<sub>2</sub>-emissions in the building sector, the design of new neighbourhoods or the retrofitting of existing buildings requires an increasingly high use of renewable energy (REN). The coupling of heat and electricity in hybrid energy systems hereby plays a key role, as it allows to cover the needs of both sectors using renewable sources. Existing case studies of hybrid energy systems for individual buildings or neighbourhoods are often highly specific to a given location, and it is difficult to draw generalisable conclusions. This work hence aims at the development of a hybrid energy systems model based on large-scale databases of renewable energy potential with high spatial and temporal resolution, in this case for Switzerland. The resulting model may be used to obtain comparable results for case studies across the country or scaled up to the national level. For this, our approach integrates national-scale databases of hourly solar photovoltaic (PV) potential [1] and ground-source heat pump (GSHP) potential [2] for individual buildings with their modelled heat and electricity demand.</p><p>The presented work consists of three steps. First, hourly energy demand for heat and electricity of the residential and service sectors is derived for the entire Swiss building stock. The hourly demand model combines a top-down modelling of annual energy demand with a bottom-up mapping of hourly demand profiles. Second, the energy demand profiles are matched with the renewable energy potentials in hybrid energy systems, at the scale of individual buildings and neighbourhoods. We further add flexibility options to these systems, such as thermal energy storage. Third, the size of the renewable technologies and the storage options are optimised such as to maximise the autonomy level of the resulting hybrid energy systems. The autonomy level is obtained through the modelling of the system dynamics at monthly-mean-hourly temporal resolution, i.e. at hourly resolution for a typical day per month. This reduces the computational complexity of the approach and assures its scalability to the national level.</p><p>The above workflow is tested on a neighbourhood in Geneva, Switzerland, and the resulting optimal system configurations are compared across different building types in the residential and service sector, and for different shares of REN generation. We show how different system configurations, such as the combined use of PV and GSHPs, as well as the addition of flexibility through the use of a thermal energy storage, impact the self-sufficiency and autonomy level of buildings and neighbourhoods. While the presented work focuses on one neighbourhood only, future extensions will aim at applying the model to the Swiss national scale using all data in the national REN databases. This will allow to compare the feasibility of different system configurations with high REN shares across the country.</p><p> </p><p>[1] Alina Walch, Roberto Castello et al. ‘Big Data Mining for the Estimation of Hourly Rooftop Photovoltaic Potential and Its Uncertainty’. <em>Applied Energy</em> 262 (2020).</p><p>[2] Alina Walch, Nahid Mohajeri, et al. ‘Quantifying the Technical Geothermal Potential from Shallow Borehole Heat Exchangers at Regional Scale’. <em>Renewable Energy</em> 165 (2021).</p>


2019 ◽  
Vol 118 ◽  
pp. 01037
Author(s):  
Daqiang Xiao ◽  
Dunnan Liu ◽  
Ruixing Yang ◽  
Xiongfei Wang

In recent years, China’s new energy has developed rapidly, and at the same time there have been serious problems of abandoning wind and abandoning light. In order to better solve the problem of new energy consumption, China officially implemented the renewable energy quota system in January 2019. Therefore, based on the current situation of new energy consumption in China, this paper first analyzes the impact of renewable energy quota policy from two aspects: capacity efficiency and grid connectivity effect, and then based on tapping local energy potential, accepting trans-regional power transmission, and optimizing outside the region. The corresponding new energy consumption strategy is proposed in the power transmission curve. Finally, based on the time series production simulation model, an empirical analysis is made on the consumption situation of a certain provincial power grid under different strategies in 2020. This paper provides a reference for promoting the proportion of new energy consumption in China.


2020 ◽  
Author(s):  
Anders Wörman ◽  
Louise Crochemore ◽  
Ilias Pechlivanidis ◽  
Marc Gions Lopez ◽  
Luigia Brandimarte ◽  
...  

<p>The viability of a renewable electricity system depends on long-term climate variations, uneven spatiotemporal distribution of renewable energy, and technical constraints. A major problem is to achieve a sustainable balance of water usage and consumption, as well as adequate energy and water distribution and storage capacities. In particular, hydropower offers a large capacity for energy storage and production flexibility, but only stands for a minor part of the total energy potential. In this study we explored the spatial and temporal variance of hydropower availability for a 35-year period based on historical hydro-meteorological data from large parts of Europe. A spectral analysis of these historical time-series shows that spatiotemporal coordination of the hydropower system covered in the Global Reservoir and Dam Database (GRanD) can potentially contribute with a “virtual” energy storage capacity that is up to four times the actual energy storage capacity contained in the existing hydropower reservoirs. Such virtual energy storage capacity implies reduced water storage demand, hence, indirectly contributes to reduced constraints of the food-water-energy nexus also in a wider system perspective. We found that the most significant benefits from a spatiotemporal management arise at distances of 1,200 – 3,000 km, i.e. on the continental scale, which can have implications for a future renewable energy system at large. The analysis also covers what we denote “energy-domain-specific drought”, which implies a shortage of energy storage capacity to avoid a deficit of energy for a given time period, and which may be reduced by the spatiotemporal coordination of power production.</p>


Jurnal MIPA ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 181
Author(s):  
Imriani Moroki ◽  
Alfrets Septy Wauran

Energi terbarukan adalah salah satu masalah energi paling terkenal saat ini. Ada beberapa sumber potensial energi terbarukan. Salah satu energi terbarukan yang umum dan sederhana adalah energi matahari. Masalah besar ketersediaan energi saat ini adalah terbatasnya sumber energi konvensional seperti bahan bakar. Ini semua sumber energi memiliki banyak masalah karena memiliki jumlah energi yang terbatas. Penting untuk membuat model dan analisis berdasarkan ketersediaan sumber energi. Energi matahari adalah energi terbarukan yang paling disukai di negara-negara khatulistiwa saat ini. Tergantung pada produksi energi surya di daerah tertentu untuk memiliki desain dan analisis energi matahari yang baik. Untuk memiliki analisis yang baik tentang itu, dalam makalah ini kami membuat model prediksi energi surya berdasarkan data iradiasi matahari. Kami membuat model energi surya dan angin dengan menggunakan Metode Autoregresif Integrated Moving Average (ARIMA). Model ini diimplementasikan oleh R Studio yang kuat dari statistik. Sebagai hasil akhir, kami mendapatkan model statistik solar yang dibandingkan dengan data aktualRenewable energy is one of the most fomous issues of energy today. There are some renewable energy potential sources. One of the common n simple renewable energy is solar energy. The big problem of the availability of energy today is the limeted sources of conventional enery like fuel. This all energy sources have a lot of problem because it has a limited number of energy. It is important to make a model and analysis based on the availability of the energy sources. Solar energy is the most prefered renewable energy in equator countries today. It depends on the production of solar energy in certain area to have a good design and analysis of  the solar energy. To have a good analysis of it, in this paper we make a prediction model of solar energy based on the data of solar irradiation. We make the solar and wind enery model by using Autoregresif Integrated Moving Average (ARIMA) Method. This model is implemented by R Studio that is a powerfull of statistical. As the final result, we got the statistical model of solar comparing with the actual data


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2018 ◽  
Vol 110 (1) ◽  
pp. 85-101 ◽  
Author(s):  
Ronald Cardenas ◽  
Kevin Bello ◽  
Alberto Coronado ◽  
Elizabeth Villota

Abstract Managing large collections of documents is an important problem for many areas of science, industry, and culture. Probabilistic topic modeling offers a promising solution. Topic modeling is an unsupervised machine learning method and the evaluation of this model is an interesting problem on its own. Topic interpretability measures have been developed in recent years as a more natural option for topic quality evaluation, emulating human perception of coherence with word sets correlation scores. In this paper, we show experimental evidence of the improvement of topic coherence score by restricting the training corpus to that of relevant information in the document obtained by Entity Recognition. We experiment with job advertisement data and find that with this approach topic models improve interpretability in about 40 percentage points on average. Our analysis reveals as well that using the extracted text chunks, some redundant topics are joined while others are split into more skill-specific topics. Fine-grained topics observed in models using the whole text are preserved.


2021 ◽  
pp. 0958305X2199229
Author(s):  
Jingyu Qu ◽  
Wooyoung Jeon

Renewable generation sources still have not achieved economic validity in many countries including Korea, and require subsidies to support the transition to a low-carbon economy. An initial Feed-In Tariff (FIT) was adopted to support the deployment of renewable energy in Korea until 2011 and then was switched to the Renewable Portfolio Standard (RPS) to implement more market-oriented mechanisms. However, high volatilities in electricity prices and subsidies under the RPS scheme have weakened investment incentives. In this study we estimate how the multiple price volatilities under the RPS scheme affect the optimal investment decisions of energy storage projects, whose importance is increasing rapidly because they can mitigate the variability and uncertainty of solar and wind generation in the power system. We applied mathematical analysis based on real-option methods to estimate the optimal trigger price for investment in energy-storage projects with and without multiple price volatilities. We found that the optimal trigger price of subsidy called the Renewable Energy Certificate (REC) under multiple price volatilities is 10.5% higher than that under no price volatilities. If the volatility of the REC price gets doubled, the project requires a 26.6% higher optimal investment price to justify the investment against the increased risk. In the end, we propose an auction scheme that has the advantage of both RPS and FIT in order to minimize the financial burden of the subsidy program by eliminating subsidy volatility and find the minimum willingness-to-accept price for investors.


Sign in / Sign up

Export Citation Format

Share Document