Nonlinear Control Strategy of Photovoltaic System Tied Three-phase Grid

Author(s):  
C. Aouadi ◽  
A. Abouloifa ◽  
M. Aourir ◽  
Y. Boussairi ◽  
A. Hamdoun ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohannad Jabbar Mnati ◽  
Dimitar V. Bozalakov ◽  
Alex Van den Bossche

Nowadays, most three-phase, “off the shelf” inverters use electrolytic capacitors at the DC bus to provide short term energy storage. However, this has a direct impact on inverter lifetime and the total cost of the photovoltaic system. This article proposes a novel control strategy called a 120° bus clamped PWM (120BCM). The 120BCM modulates the DC bus and uses a smaller DC bus capacitor value, which is typical for film capacitors. Hence, the inverter lifetime can be increased up to the operational lifetime of the photovoltaic panels. Thus, the total cost of ownership of the PV system will decrease significantly. Furthermore, the proposed 120BCM control strategy modulates only one phase current at a time by using only one leg to perform the modulation. As a result, switching losses are significantly reduced. The full system setup is designed and presented in this paper with some practical results.


2012 ◽  
Vol 507 ◽  
pp. 96-100
Author(s):  
Zhong Zhang ◽  
Wei Ming Tong

Now the nonlinear control strategy used by a lot of power electronic converters is not dependent on the mathematical model of the system. They are only based on the error of control variables to control the output voltage or other variables, and this leads to the shortcomings of poor control and not easy to optimize. The fundamental reason is that they are not based on the mathematical model of converter topology structure. This paper presents a new way to build mathematical model. The paper established the unified mathematical model of the three-phase Boost converter topology structure by studied the three-phase Boost converter topology structure deeply and based on the law of conservation of energy and combined with small-signal modeling analysis method, and done the systematic analysis for it. The analysis method is also applicable to other converter topology, such as the buck, buck-boost, etc., and the model not only can be used in the controller design, can also provide a theoretical basis for the applications of a new nonlinear control strategy.


2012 ◽  
Vol 608-609 ◽  
pp. 164-168
Author(s):  
Jian Jun Su ◽  
Men Yue Hu ◽  
Hong Yan Gong ◽  
Hai Tao Sun ◽  
Zhi Jian Hu ◽  
...  

Firstly the research situation for grid-connected photovoltaic (PV) is introduced, then, the engineering mathematical model of PV cells is introduced. The perturbation and observation algorithm is chosen as the maximum power point tracking (MPPT) algorithm. The SPWM double-loop control strategy with outer voltage loop and inner current loop is described and a three-phase grid-connected photovoltaic model is established. The simulation results demonstrate the validity and correctness of the simulation model built in this paper.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3090
Author(s):  
Hong Cheng ◽  
Daokuan Yang ◽  
Cong Wang

The three-phase Y-connected bridgeless rectifier is essentially a nonlinear system, and it is difficult to obtain superior dynamic performance under the action of traditional linear controller. Under the condition of unbalanced power grids, this paper has established a mathematical model based on Euler–Lagrange (EL) equations with line voltage and line current as state variables. Furthermore, it then designed a passivity-based controller in inner current loop based on the mathematical model. The hybrid nonlinear control strategy consisting of active disturbance rejection controller (ADRC) in the outer voltage loop and passivity-based controller (PBC) in the inner current loop is adopted to control the system, which does not need to consider the positive and negative sequence components. The control structure is simple and can improve the steady-state accuracy, dynamic performance and anti-interference ability. The feasibility of the proposed control strategy is verified by computer simulation, which has a guiding significance for the application of three-phase bridgeless rectifier in practical engineering.


2012 ◽  
Vol 466-467 ◽  
pp. 829-833 ◽  
Author(s):  
Kun Mu ◽  
Xiao Bin Mu ◽  
Xue Yu Bao

The mathematical model of Three-phase VoltagePulse Width Modulation (PWM) DC/AC inverter is non-linear, in view of the traditional linear control strategy can not meet the requirements of designing high-performance DC/AC inverter, this paper propose a new nonlinear control strategy for Three-phase Voltage PWM DC/AC inverter called Passivity-based Control. We can alter the inverter model in three-phase abc coordinate to two-phase synchronous rotating dq coordinate for establishing the Euler – Lagrange (EL) energy model for this system, then we also proof this system is strictly passive. We can control the output energy of the system, and we use the approaches of injecting damping and decoupling to improve system performance. Usually, we can use Single Chip Microcomputer or other kinds of computer with this algorithm for our design, this algorithm can be programmed with the computer language, such as C/C++ and assembly language, etc. Simulation results show that passivity-based control method can make this system possess the high-performance of robustness and dynamic.


Sign in / Sign up

Export Citation Format

Share Document