Formation and obstacle-avoidance control for mobile swarm robots based on artificial potential field

Author(s):  
Song Ping ◽  
Li Kejie ◽  
Han Xiaobing ◽  
Qi Guangping
2020 ◽  
Vol 42 (10) ◽  
pp. 1840-1857
Author(s):  
Dongfang Li ◽  
Zhenhua Pan ◽  
Hongbin Deng

In order to study the adaptability of a multi-redundancy and multi-degree-of-freedom snake-like robot to underwater motion, a two-dimensional (2-D) obstacle avoidance control algorithm for a snake-like robot based on immersed boundary-lattice Boltzmann method (IB-LBM) and improved artificial potential field (APF) is proposed in this paper. Firstly, the non-linear flow field model is established under the framework of LBM, and the IB method is introduced to establish a fluid solid coupling of a 2-D soft snake-like robot. Then, the obstacle avoidance of a snake-like robot in a flow field is realized by optimizing the curvature equation of the serpentine curve and eliminating the local minimum in APF method. Finally, the effects by exerted different control parameters on a snake-like robot’s obstacle avoidance capability are analyzed via MATLAB simulation experiment, by which we can find the optimal parameter of the obstacle avoidance and testify the validity of the proposed control algorithm.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042029
Author(s):  
Boyu Wei

Abstract As a typical multi-agent formation, UAV formation is playing an increasingly powerful role in the civilian and military fields. Obstacle avoidance, as an important technology in controlling formation, determines the application prospects of UAVs. This paper studies the time-varying formation of UAVs with interactive topology to avoid obstacles, aiming to improve the ability of UAV formations to deal with complex environments while traveling. Firstly, a repulsive force field is reasonably introduced based on the existing control scheme, and an improved distributed time-varying formation control scheme based on artificial potential field is proposed. Then combined with the basic idea of model predictive control, an obstacle avoidance strategy in which UAV obstacle avoidance and formation shaping are carried out simultaneously is proposed. Finally, a time-varying formation simulation experiment containing four UAVs was carried out to verify the validity of the results.


Author(s):  
Ning Wang ◽  
Jiyang Dai ◽  
Jin Ying

AbstractAiming at the problem of UAV formation's obstacle avoidance and the consensus of position and velocity in a 3D obstacle environment, a novel distributed obstacle avoidance control algorithm for cooperative formation based on the improved artificial potential field (IAPF) and consensus theory is proposed in this paper. First, the particle model of the UAV and the dynamic model of the second-order system are established, and the topological structure of the communication network of the system is described with the knowledge of graph theory. Second, the attractive potential field function containing the coordination gains factor, the repulsive potential field function containing the influence factor of the repulsive force and the planning angle, and the potential field function between the UAVs containing the communication weight are defined. Then, the variables of position and velocity in the consensus protocol are improved by the reference vector of the formation center and the expected velocity, respectively, and a new formation obstacle avoidance control protocol is designed by combining the IAPF and the theory of consensus. Finally, the Lyapunov function is used to prove the stable convergence of the algorithm. The simulation results show that this method can not only prevent the UAV from colliding with each other while avoiding static and dynamic obstacles but also enable the UAV to quickly restore the expected formation and achieve the consensus of the relative distance, relative height, and velocity.


2021 ◽  
Vol 9 (2) ◽  
pp. 161
Author(s):  
Xun Yan ◽  
Dapeng Jiang ◽  
Runlong Miao ◽  
Yulong Li

This paper proposes a formation generation algorithm and formation obstacle avoidance strategy for multiple unmanned surface vehicles (USVs). The proposed formation generation algorithm implements an approach combining a virtual structure and artificial potential field (VSAPF), which provides a high accuracy of formation shape keeping and flexibility of formation shape change. To solve the obstacle avoidance problem of the multi-USV system, an improved dynamic window approach is applied to the formation reference point, which considers the movement ability of the USV. By applying this method, the USV formation can avoid obstacles while maintaining its shape. The combination of the virtual structure and artificial potential field has the advantage of less calculations, so that it can ensure the real-time performance of the algorithm and convenience for deployment on an actual USV. Various simulation results for a group of USVs are provided to demonstrate the effectiveness of the proposed algorithms.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110264
Author(s):  
Jiqing Chen ◽  
Chenzhi Tan ◽  
Rongxian Mo ◽  
Hongdu Zhang ◽  
Ganwei Cai ◽  
...  

Among the shortcomings of the A* algorithm, for example, there are many search nodes in path planning, and the calculation time is long. This article proposes a three-neighbor search A* algorithm combined with artificial potential fields to optimize the path planning problem of mobile robots. The algorithm integrates and improves the partial artificial potential field and the A* algorithm to address irregular obstacles in the forward direction. The artificial potential field guides the mobile robot to move forward quickly. The A* algorithm of the three-neighbor search method performs accurate obstacle avoidance. The current pose vector of the mobile robot is constructed during obstacle avoidance, the search range is narrowed to less than three neighbors, and repeated searches are avoided. In the matrix laboratory environment, grid maps with different obstacle ratios are compared with the A* algorithm. The experimental results show that the proposed improved algorithm avoids concave obstacle traps and shortens the path length, thus reducing the search time and the number of search nodes. The average path length is shortened by 5.58%, the path search time is shortened by 77.05%, and the number of path nodes is reduced by 88.85%. The experimental results fully show that the improved A* algorithm is effective and feasible and can provide optimal results.


2012 ◽  
Vol 160 ◽  
pp. 180-184
Author(s):  
Xiao Chen Lai ◽  
Si Min Lu ◽  
Xi Chen ◽  
Pei Feng Qiu ◽  
Li Kun Li

Based on algorithms of artificial potential field and inertial navigation positioning, the design and implementation of robot is introduced with the features of obstacle avoidance and navigation automatically. Experiments show that the robot can navigate to destination effectively without any collision.


Sign in / Sign up

Export Citation Format

Share Document