Dual-drive force/velocity control: implementation and experimental results

Author(s):  
P. Kazanzides ◽  
N.S. Bradley ◽  
W.A. Wolovich
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


Author(s):  
Mohammed Abu-Mallouh ◽  
Brian Surgenor

In this paper, the application of a pneumatic gantry robot to contour tracking is examined. A hybrid controller is structured to control the contact force and the tangential velocity, simultaneously. A previous study provided controller tuning and model validation results for a fixed gain PI-based force/velocity controller. Performance was limited by system lag and Coulomb friction. New results demonstrate that even with perfect friction compensation, the limiting factor is the system lag. A neural network (NN) compensator was subsequently developed to counter both effects. Results for straight and curved edged workpieces are presented to demonstrate the effectiveness of the NN compensator and the capabilities of a pneumatic gantry robot.


2013 ◽  
Vol 278-280 ◽  
pp. 641-646 ◽  
Author(s):  
Min Kyu Park ◽  
Dinesh Rabindran ◽  
Delbert Tesar ◽  
Byoungsoo Lee ◽  
Kum Gil Sung

A vehicle's door is frequently used by a driver or passengers. When a vehicle is parked at incline, it is not easy to open or close doors because of gravity force and external disturbances. Moreover, there might cause a safety problems for a weak or a disabled person. Therefore, there is increasing demand for automation of vehicle's door. In this study, an automatic swing door mechanism for a passenger car is proposed by using a parallel force/velocity actuator (PFVA) based on a Dual-Input-Single-Output (DISO) framework. PFVA has two distinct actuators. One is force actuator(FA) with a low reduction gear train, the other is velocity actuator(VA) with a high reduction gear train. It can be effectively used in combining velocity control with force compensation application. First, we formulated a kinematics and a dynamics of automatic swing door system with PFVA as input, and then a simulation environment was developed for a feasibility test by using a kinematic and a dynamic model. Finally, a velocity control with force compensation was performed by using the developed simulation environment. VA was faithfully followed a reference velocity trajectory for opening and closing a door, and FA was able to compensate a gravity torque and an inertial disturbance torque coming from the VA.


1992 ◽  
Vol 02 (01) ◽  
pp. 205-209 ◽  
Author(s):  
JERZY WOJEWODA ◽  
RONALD BARRON ◽  
TOMASZ KAPITANIAK

Experimental results of friction in a mechanical system are reported. Strange properties of the friction force-velocity dependence are shown, where this relationship does not follow the typical assumption of the force proportional to the sign of the relative velocity.


Sign in / Sign up

Export Citation Format

Share Document