O(N) forward dynamics computation of open kinematic chains based on the principle of virtual work

Author(s):  
K. Yamane ◽  
L. Nakamura
2013 ◽  
Vol 373-375 ◽  
pp. 34-37
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Jian Wei Sun

The dynamic modeling method for parallel robot based on the principle of virtual work and equivalent tree structure is proposed by taking off the platform and the chains as well as degenerating parallel robot into a tree structure, the closed-form solutions for the inverse and forward dynamics models of parallel robot are derived. The method is applied on kinematics and dynamics analysis of a representative 3-RRR spherical parallel robot.


Robotica ◽  
2015 ◽  
Vol 34 (6) ◽  
pp. 1383-1402 ◽  
Author(s):  
Ali Taherifar ◽  
Hassan Salarieh ◽  
Aria Alasty ◽  
Mohammad Honarvar

SUMMARYThe N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on the principle of virtual work and link Jacobian matrices. Finally, the numerical example is presented for some trajectories.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


2012 ◽  
Vol 28 (3) ◽  
pp. 385-401 ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
José M. Rico-Martínez ◽  
Salvador Pacheco-Gutiérrez ◽  
Gustavo Cerda-Villafaña

Author(s):  
Quantian Luo ◽  
Liyong Tong

This paper presents optimal design for nonlinear compliant cellular structures with bi- and multi-stable states via topology optimization. Based on the principle of virtual work, formulations for displacements and forces are derived and expressed in terms of stress and strain in all load steps in nonlinear finite element analysis. Optimization for compliant structures with bi-stable states is then formulated as: 1) to maximize the displacement under specified force larger than its critical one; and 2) to minimize the reaction force for the prescribed displacement larger than its critical one. Algorithms are developed using the present formulations and the moving iso-surface threshold method. Optimal design for a unit cell with bi-stable states is studied first, and then designs of multi-stable compliant cellular structures are discussed.


1989 ◽  
Vol 56 (3) ◽  
pp. 704-707 ◽  
Author(s):  
John G. Papastavridis

Starting from the general kinetic principle of d’Alembert/Lagrange, an energetic proof of the sufficiency conditions for equilibrium (known as Principle of Virtual Work) is presented. It is clearly demonstrated why to maintain equilibrium requires that, in addition to the familiar vanishing of the virtual work of the impressed forces on the originally motionless system, its geometrical (holonomic) constraints be explicitly time independent (stationary) and its nonintegrable kinematical (nonholonomic) ones be linear and homogeneous in the generalized velocities (catastatic).


Sign in / Sign up

Export Citation Format

Share Document