Dynamic feedback controller of Euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle

Author(s):  
A. Mokhtari ◽  
A. Benallegue
2013 ◽  
Vol 367 ◽  
pp. 411-416 ◽  
Author(s):  
Guang Yan Xu ◽  
Yi Bo Shi

For an Unmanned Aerial Vehicle (UAV) formation in leader-follower mode, considering the relative position relationship between neighbor vehicles in the formation, an elastic distance vector is proposed. The dynamic equations of a flight speed adaptive UAV formation are established using the elastic distance vector we proposed. The state feedback controller is designed. Simulation results show that the controller can be used to control the follower vehicles to follow the leader vehicle maneuvering effectively and keep the desired formation well, most importantly, the relative distance between neighbor vehicles in the formation is adapted to the changes of flight speed.


2013 ◽  
Vol 321-324 ◽  
pp. 819-823 ◽  
Author(s):  
Qi Dong Ma ◽  
Zhen Guo Sun ◽  
Jing Ran Wu ◽  
Wen Zeng Zhang

A nonlinear dynamic model of a miniature Six-Rotor is presented. A 4 channels PID controller is designed to operate the under actuated and dynamically unstable system with 6 inputs. Driving forces of 6 rotors are divided into four components such as throttle, roll, pitch and yaw. The control algorithm is simulated with Design Optimization Toolbox in Matlab. After observing the corresponding responses of Euler angles, the altitude and the driving force for each motor, the simulation results show good performance.


2014 ◽  
Vol 704 ◽  
pp. 270-276
Author(s):  
Renato A. Aguiar ◽  
Fabrizio Leonardi

The primary goal of this work is to propose an alternative methodology as a first approach in the design of control systems by means of a feedback state gain. The proposed method is detailed and an application is presented. The results show relevant aspects regarding the state feedback gain, especially in regard to variation in the parameters of the plant.


Sign in / Sign up

Export Citation Format

Share Document