scholarly journals Analysis and evaluation of the stability of a biologically inspired, Leg loss tolerant gait for six- and eight-legged walking robots

Author(s):  
Martin Görner ◽  
Gerd Hirzinger
Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


Author(s):  
A. L. Schwab ◽  
M. Wisse

Abstract Passive dynamic walking is an important development for walking robots, supplying natural, energy-efficient motions. In practice, the cyclic gait of passive dynamic prototypes appears to be stable, only for small disturbances. Therefore, in this paper we research the basin of attraction of the cyclic walking motion for the simplest walking model. Furthermore, we present a general method for deriving the equations of motion and impact equations for the analysis of multibody systems, as in walking models. Application of the cell mapping method shows the basin of attraction to be a small, thin area. It is shown that the basin of attraction is not directly related to the stability of the cyclic motion.


2012 ◽  
Vol 186 ◽  
pp. 98-104 ◽  
Author(s):  
Luige Vladareanu ◽  
Daniel Octavian Melinte

Abstract. The paper presents a strategy for the dynamic hybrid force-position control of the walking robot motion on slope using the ZMP method for dynamic control and a stable and robust method. Through dynamic and kinematic modeling of the walking robots motion an open architecture system was developed which contains five control interfaces. The stability problem of quadruped walking robots, through extendible segments which are designed to reduce the difficulty of walking on slope, and also by using them to avoid obstacles that may occur during a stepping cycle are presented. The results obtained have led to an improvement in the response time to disturbances, to tracking the motion trajectory with higher precision in conditions of high stability and to development of new technological capabilities, adapting the robot walking to movement over sloped terrain, with obstacles and bumps.


2012 ◽  
Vol 535-537 ◽  
pp. 1794-1798
Author(s):  
Lei Nie ◽  
Dao Yong Qiao ◽  
Zhan Dong Su ◽  
Han Zhang ◽  
Yan Lv

Longxihe dangerous rock is located on both sides of gully of Longxi river in Chongqing. The complex geological environmental condition made dangerous rock a typical geological hazard to Chongqing. Through field investigation of dangerous rock zone and analysis of geological environment condition, we researched the formation mechanism and unstable mode of dangerous rock and done qualitative analysis and analytical analysis to the dangerous rock. Under the condition of dead weight and surface load , the stability coefficient is 1.16~1.29, which illustrates that dangerous rock is basically stable; under the condition of dead weight, surface load and hydrostatic pressure, stability coefficient is 0.95~1.04, which illustrates that dangerous rock is not stable. The emergency capacity is so slow that it’s urgent to take treatment measures to control dangerous rock. And the control measures of clearing dangerous rocks, bolting, concrete spray protection and local hanging net to support should be adopted immediately.


Author(s):  
Laura Raibeck ◽  
John Reap ◽  
Bert Bras

In this paper, self-cleaning surfaces are investigated as an environmentally benign design option. These surfaces are a biologically inspired concept; first discovered on the lotus plant, micro- and nano-scale surface features aid in contaminant removal. Self-cleaning surfaces have been successfully recreated for engineering applications and appear on a variety of products. Because they can be cleaned with water alone, the use of such a surface could lead to less resource consumption during cleaning, if used in place of more resource intensive current industrial cleaning methods. A screening Life Cycle Inventory (LCI) study is used to determine if environmental benefits are obvious from the use of a self-cleaning surface over the entire life cycle. The study is performed on a chemical self-cleaning coating, selected for its durability, transparency and ease of use. The results of the LCI study are compared to current industrial cleaning practices of aqueous spray or ultrasonic cleaning, including solvent production and use of the cleaning machines. The LCI study reveals that environmental benefits are present in the use (cleaning) phase of a self-cleaning surface. However, when also considering the production of the self-cleaning surface, no clear environmentally superior choice exists. More analysis and evaluation of the production of self-cleaning surfaces is needed to select the more sustainable choice.


Author(s):  
Dominik Belter ◽  
Piotr Skrzypczyński

A biologically inspired approach to feasible gait learning for a hexapod robotThe objective of this paper is to develop feasible gait patterns that could be used to control a real hexapod walking robot. These gaits should enable the fastest movement that is possible with the given robot's mechanics and drives on a flat terrain. Biological inspirations are commonly used in the design of walking robots and their control algorithms. However, legged robots differ significantly from their biological counterparts. Hence we believe that gait patterns should be learned using the robot or its simulation model rather than copied from insect behaviour. However, as we have foundtahula rasalearning ineffective in this case due to the large and complicated search space, we adopt a different strategy: in a series of simulations we show how a progressive reduction of the permissible search space for the leg movements leads to the evolution of effective gait patterns. This strategy enables the evolutionary algorithm to discover proper leg co-ordination rules for a hexapod robot, using only simple dependencies between the states of the legs and a simple fitness function. The dependencies used are inspired by typical insect behaviour, although we show that all the introduced rules emerge also naturally in the evolved gait patterns. Finally, the gaits evolved in simulations are shown to be effective in experiments on a real walking robot.


Robotica ◽  
2003 ◽  
Vol 21 (6) ◽  
pp. 667-675 ◽  
Author(s):  
Yu Zhou

A binary walking robot moves as a result of bi-state actuator transitions. Because of the bi-state nature of binary joints, many research results about continuous walking robots cannot be applied to binary walking robots directly. In this paper, a new and simple model of rigid-link binary walking robot is proposed, around which related concepts are introduced, and formulas are derived. Based on this model, general characteristics and limitations of periodic gaits are discussed, and the stability qualities of several straight-line walking periodic gaits are studied in both pitch-greater-than-stroke and stroke-greater-than-pitch cases. Valuable results are obtained from the analysis, which should be followed in the design of rigid-link binary walking robots.


Robotica ◽  
2002 ◽  
Vol 20 (6) ◽  
pp. 595-606 ◽  
Author(s):  
Elena Garcia ◽  
Joaquin Estremera ◽  
Pablo Gonzalez de Santos

Several static and dynamic stability criteria have been defined in the course of walking robot history. Nevertheless, different applications may require different stability criteria and, to the authors' best knowledge, there is no qualitative classification of such stability measurements. Using the wrong stability criterion to control a robot gait may prevent the task from succeeding. Furthermore, if the optimum criterion is found, the robot gait can also be optimized. In this paper, the stability criteria that have been applied to walking robots with at least four legs are examined in terms of their stability margins in different static and dynamic situations. As a result, a qualitative classification of stability criteria for walking machines is proposed so that the proper criterion can be chosen for every desired application.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Zechuang Li ◽  
Peifeng Cheng ◽  
Zhibin Liu ◽  
Junjie Zheng

Old goaf under the overpass becomes serious hidden trouble of subgrade-pavement and bridge engineering. Based on geological survey, geophysical survey and theoretical analysis, this paper studies on formation mechanism and distribution characteristics of the surface residual deformation in old goaf in No.9 Line Overpass across Rapid Rail Transit Line No.3 in Dalian city. A comprehensive analysis and evaluation has been made on the stability of old goaf. Based on the calculation principle of the probability integration method, the conception of ground residual subsidence coefficient and the predicted model of residual deformation are proposed, ground residual deformation of old goaf under the overpass is predicted. According to the zonal principles of ground stability, the stabilities of areas are divided. The results indicated that, new overpass has an important effect on the old goaf overburden rock activation in study area that the surface will be instability uneven settlement and the ground residual deformation values will exceed allowable values. Some treatment should be done to the old goaf because of the poor stability of goaf and non-goaf within influence zone in study area.


Sign in / Sign up

Export Citation Format

Share Document