Orientation estimation via low cost depth sensor ICP versus MEMS gyroscope sensor fusion

Author(s):  
Thomas Calloway ◽  
Dalila B. Megherbi
2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Author(s):  
Alfredo Cigada ◽  
Elisabetta Leo ◽  
Marcello Vanali

A full characterization of the mechanical parameters for vibrating MEMS sensors is required before integrating the mechanical and the electronic part. This is to verify that the main design specifications are fulfilled before sensors are available on the market. The main goal is to accurately establish the well-working devices in the shortest time. In this paper the electrical method based on the measurement of the GND current is used to satisfy this purpose. To check the validity of the achieved results through this method a comparison is done with those obtained through the widely used optical method based on vibration measurements through by means of a Laser Doppler Vibrometer (LDV).


Author(s):  
Seyed Fakoorian ◽  
Matteo Palieri ◽  
Angel Santamaria-Navarro ◽  
Cataldo Guaragnella ◽  
Dan Simon ◽  
...  

Abstract Accurate attitude estimation using low-cost sensors is an important capability to enable many robotic applications. In this paper, we present a method based on the concept of correntropy in Kalman filtering to estimate the 3D orientation of a rigid body using a low-cost inertial measurement unit (IMU). We then leverage the proposed attitude estimation framework to develop a LiDAR-Intertial Odometry (LIO) demonstrating improved localization accuracy with respect to traditional methods. This is of particular importance when the robot undergoes high-rate motions that typically exacerbate the issues associated with low-cost sensors. The proposed orientation estimation approach is first validated using the data coming from a low-cost IMU sensor. We further demonstrate the performance of the proposed LIO solution in a simulated robotic cave exploration scenario.


2021 ◽  
Author(s):  
Cooper Heyne Minehart ◽  
Jeffrey Naber ◽  
Jason Blough ◽  
Xin Wang ◽  
Chris Glugla ◽  
...  

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000359-000366 ◽  
Author(s):  
Patrick McCluskey ◽  
Chandradip Patel ◽  
David Lemus

Elevated temperatures can significantly affect the performance and reliability of MEMS gyroscope sensors. A MEMS vibrating resonant gyroscope measures angular velocity via a displacement measurement which can be on the order on nanometers. High sensitivity to small changes in displacement causes the MEMS Gyroscope sensor to be strongly affected by changes in temperature which can affect the displacement of the sensor due to thermal expansion and thermomechanical stresses. Analyzing the effect of temperature on MEMS gyroscope sensor measurements is essential in mission critical high temperature applications, such as inertial tracking of the movement of a fire fighter in a smoke filled indoor environment where GPS tracking is not possible. In this paper, we will discuss the development of the high temperature package for the tracking application, including the characterization of the temperature effects on the performance of a MEMS gyroscope. Both stationary and rotary tests were performed at room and at elevated temperatures on 10 individual single axis MEMS gyroscope sensors.


2020 ◽  
Vol 6 (3) ◽  
pp. 11
Author(s):  
Naoyuki Awano

Depth sensors are important in several fields to recognize real space. However, there are cases where most depth values in a depth image captured by a sensor are constrained because the depths of distal objects are not always captured. This often occurs when a low-cost depth sensor or structured-light depth sensor is used. This also occurs frequently in applications where depth sensors are used to replicate human vision, e.g., when using the sensors in head-mounted displays (HMDs). One ideal inpainting (repair or restoration) approach for depth images with large missing areas, such as partial foreground depths, is to inpaint only the foreground; however, conventional inpainting studies have attempted to inpaint entire images. Thus, under the assumption of an HMD-mounted depth sensor, we propose a method to inpaint partially and reconstruct an RGB-D depth image to preserve foreground shapes. The proposed method is comprised of a smoothing process for noise reduction, filling defects in the foreground area, and refining the filled depths. Experimental results demonstrate that the inpainted results produced using the proposed method preserve object shapes in the foreground area with accurate results of the inpainted area with respect to the real depth with the peak signal-to-noise ratio metric.


Sign in / Sign up

Export Citation Format

Share Document