Performance and Reliability of MEMS Gyroscopes and Packaging at High Temperatures

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000359-000366 ◽  
Author(s):  
Patrick McCluskey ◽  
Chandradip Patel ◽  
David Lemus

Elevated temperatures can significantly affect the performance and reliability of MEMS gyroscope sensors. A MEMS vibrating resonant gyroscope measures angular velocity via a displacement measurement which can be on the order on nanometers. High sensitivity to small changes in displacement causes the MEMS Gyroscope sensor to be strongly affected by changes in temperature which can affect the displacement of the sensor due to thermal expansion and thermomechanical stresses. Analyzing the effect of temperature on MEMS gyroscope sensor measurements is essential in mission critical high temperature applications, such as inertial tracking of the movement of a fire fighter in a smoke filled indoor environment where GPS tracking is not possible. In this paper, we will discuss the development of the high temperature package for the tracking application, including the characterization of the temperature effects on the performance of a MEMS gyroscope. Both stationary and rotary tests were performed at room and at elevated temperatures on 10 individual single axis MEMS gyroscope sensors.

Author(s):  
Chandradip Patel ◽  
Allen Jones ◽  
Joshua Davis ◽  
Patrick McCluskey ◽  
David Lemus

Elevated temperatures can significantly affect the performance and reliability of MEMS gyroscope sensors. A MEMS vibrating resonant gyroscope measures angular velocity via a displacement measurement which can be on the order on nanometers. High sensitivity to small changes in displacement causes the MEMS Gyroscope sensor to be strongly affected by changes in temperature which can affect the displacement of the sensor due to thermal expansion and thermomechanical stresses. Analyzing the effect of temperature on MEMS gyroscope sensor measurements is essential in mission critical high temperature applications, such as inertial tracking of the movement of a fire fighter in a smoke filled indoor environment where GPS tracking is not possible. In this paper, we will discuss the development of a test protocol which was used to assess temperature effects. Both stationary and rotary tests were performed at room and at elevated temperatures on 10 individual single axis MEMS gyroscope sensors.


Author(s):  
Alfredo Cigada ◽  
Elisabetta Leo ◽  
Marcello Vanali

A full characterization of the mechanical parameters for vibrating MEMS sensors is required before integrating the mechanical and the electronic part. This is to verify that the main design specifications are fulfilled before sensors are available on the market. The main goal is to accurately establish the well-working devices in the shortest time. In this paper the electrical method based on the measurement of the GND current is used to satisfy this purpose. To check the validity of the achieved results through this method a comparison is done with those obtained through the widely used optical method based on vibration measurements through by means of a Laser Doppler Vibrometer (LDV).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Li Jin ◽  
Shi-Yang Qin ◽  
Rui Zhang ◽  
Meng-Wei Li

Abstract Micro-electro-mechanical system (MEMS) gyroscopes have numerous potential applications including guidance, robotics, tactical-grade navigation, and automotive applications fields. The methods with ability of the weak Coriolis force detection are critical for MEMS gyroscopes. In this paper, we presented a design of MEMS gyroscope based on the tunneling magneto-resistance effect with higher detection sensitivity. Of all these designed parameters, the structural, magnetic field, and magneto-resistance sensitivity values reach to 21.6 nm/°/s, 0.0023 Oe/nm, and 29.5 mV/Oe, thus, with total sensitivity of 1.47 mV/°/s. Multi-bridge circuit method is employed to suppress external magnetic interference and avoid the integration error of the TMR devices effectively. The proposed tunneling magneto-resistive micro-gyroscope shows a possibility to make an inertial grade MEMS gyroscope in the future.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Clifford K. Ho ◽  
A. Roderick Mahoney ◽  
Andrea Ambrosini ◽  
Marlene Bencomo ◽  
Aaron Hall ◽  
...  

Pyromark 2500 is a silicone-based high-temperature paint that has been used on central receivers to increase solar absorptance. The radiative properties, aging, and selective absorber efficiency of Pyromark 2500 are presented in this paper for use as a baseline for comparison to high-temperature solar selective absorber coatings currently being developed. The solar absorptance ranged from ∼0.97 at near-normal incidence angles to ∼0.8 at glancing (80°) incidence angles, and the thermal emittance ranged from ∼0.8 at 100 °C to ∼0.9 at 1000 °C. After thermal aging at temperatures of ∼750 °C or higher, the solar absorptance decreased by several percentage points within a few days. It was postulated that the substrate may have contributed to a change in the crystal structure of the original coating at elevated temperatures.


2014 ◽  
Vol 1035 ◽  
pp. 138-143
Author(s):  
Ping Zhou ◽  
Pu Rong Jia ◽  
Wen Ge Pan

In this paper, the effect of elevated temperature on the behavior of carbon fiber-reinforced T300/BMP350 unidirectional laminates was studied by loading static tensile on 0°, 90°and ±45° lay-up. The stress-strain relationships of the laminates under different temperatures were obtained. The effect of temperature on the mechanical properties of materials was systematically studied. The damage and failure mechanisms of the material were studied by analyzing the material stress-strain curves and the failure modes. Results show that the T300/BMP350 polyimide matrix composites have a strong resistance to high temperature. For 0° and 90° lay-up, the retentions of tensile strength and modulus are more than 80% and 50%, respectively. High temperature has little effect on the material failure modes. Finally, based on the test results, an empirical formula which relates strength and temperature of the material was fitted.


2017 ◽  
Vol 891 ◽  
pp. 25-32
Author(s):  
Kritsayanee Saelor ◽  
Panyawat Wangyao

Udimet 520 is a low precipitation strengthened nickel-based superalloy, which was designed and developed to be gas turbine blades at elevated temperatures. However, after long-term service under high stresses and temperatures, the microstructure of the turbine blades could be continually degraded. Therefore, the mechanical properties could be worse than the new ones. The rejuvenation heat treatment of degraded turbine blades, which were made of cast Udimet 520, was following by solution treatment at 1,121oC / 4 hours and then double aging processes including primary aging at 843 oC / 24 hours and secondary aging at 760oC / 16 hours, respectively. However, in practical reheat treatment processes, the temperature during solution treatment could be dropped by error or malfunction of high temperature heating furnace because the furnace has to be operated continually at very high temperature for very long time resulting in final reheat treated microstructures in many nickel base superalloys. To simulate this effect, the droppings of temperature during solution treatment are chosen and performed for 3 levels; 840oC, 800oC and 760oC, which could happen in practical working then heated up again immediately to solution temperature level. The maximum number of temperature dropping during the single solution treatment is up to 3 times. Received results show that the effect of temperature dropping during solution treatment has influenced on the final rejuvenated microstructures slightly due to the low precipitation behavior of the alloy. The long term heating at 800oC and 900oC / 1000 hours provided much effect in gamma prime particle coarsening.


2006 ◽  
Vol 324-325 ◽  
pp. 227-230
Author(s):  
Jin Won Joo ◽  
Yong Chul Cho ◽  
Jong Hwa Won ◽  
Sung Hoon Choa

In this paper, deformation behavior of the MEMS gyroscope package subjected to temperature change is investigated using a high-sensitivity moiré interferometry. Temperature dependent analyses of warpage and extension/contraction of the package are presented. Detailed global and local deformations of the package by temperature change are investigated and its effect on the frequency shift of the MEMS gyroscope is studied.


2020 ◽  
Vol 13 (2) ◽  
pp. 136-143
Author(s):  
Nuha Hussein Ali ◽  
Haitham Al-Thairy

This paper presents and validates a numerical model utilizing the nonlinear finite element software ABAQUS/Standard to simulate the performance and failure of GFRP reinforced concrete beams under high temperature. A numerical model was firstly developed by selecting the proper geometrical and material modelling parameters with suitable analysis procedure available in ABAQUS/Standard. The developed numerical model was verified by comparing numerical results with the corresponding results of experimental test extracted from current study on GFRP-RC beams under different elevated temperatures ranges from (20 to 600ºC). Validation results have indicated the accuracy of the suggested numerical model. The validated numerical model was implemented to investigate the effect of important parameters on the performance and maximum load of GFRP-RC beams under different elevated temperatures that are not considered in the current experimental tests. These parameters include effect of exposed time or time- temperature history; effect of temperature distribution around the beams cross-section. Results indicate that the finite element software ABAQUS/Standard can reasonably predict the performance and ultimate load of GFRP-RC beams under different elevated temperatures.


Author(s):  
C. Koehler ◽  
G. Thomas

The usefulness of silicon nitride as a high temperature ceramic can be limited by the presence of amorphous phases at the grain boundaries. Dense silicon nitride ceramics are produced using pressureless sintering of Si3N4 with Y-Si-Al-O-N additives. When these additives are left as a glassy phase at the grain boundaries and triple grain junctions, the mechanical properties at elevated temperatures are weakened due to these low viscous glasses. Post-sintering heat treatments and close compositional control can be effective in transforming the glass into crystalline phases at the grain boundaries thereby increasing the refractoriness.To optimize high temperature mechanical properties, processing must be controlled not only to fully crystallize the grain boundaries but also to avoid certain unstable secondary phases whose oxidation leads to large molar volume changes which causes possible cracking. Transmisssion electron microscopy and x-ray microanalysis (EDS) are significant methods to characterize the amorphous grain boundary pockets and to identify the crystalline grain boundary phases.


Sign in / Sign up

Export Citation Format

Share Document