Application of Synchrophasor Measurement to Restore the Secondary Current of the Saturated Current Transformer

Author(s):  
S.A. Piskunov ◽  
A.V. Mokeev
Author(s):  
A N Sarwade ◽  
P K Katti ◽  
J G Ghodekar

Current and voltage signals recieved from conventional iron core Current Transformer (CT) and Voltage Transformer plays very important role for correct operation of Distance Distance Relay (DDR). Increase in secondary burden connected to CT causes it to saturate at earlier stage. The saturated CT produces distorted secondary current, causing DDR to under reach and to operate by certain time delay. Rogowski Coils (RCs) are attaining increased acceptance and use in electrical power system due to their inherent linearity, greater accuracy and wide operating current range. This paper presents use of RC as an advanced measurement device suitable for DDR. Case study for validation of use of RC is carried out on low voltage system. The simulation results of Distance protection scheme used for protection of part of 220kV AC system shows excellent performance of RC over CT under abnormal conditions.


Author(s):  
Amirov Sultan Fayzullayevich Et.al

The article discusses the issue of introducing a correction factor for protection and control devices, as the value of the secondary current in a certain range of the auto-adjustable current transformer does not correspond to the value of the secondary current in another range determined by the difference of magnetic driving forces generated by the components of the primary current. Alternatively, an algorithm has been developed to account for the measurement error in this condition in an automatic system that controls the operating mode of the current transformer. It was also found that the output data should be transmitted taking into account the correction factor in order to ensure the proper operation of the protection and measuring devices when the current transformer is switched to another measuring range in the measuring range.


2007 ◽  
Vol 18-19 ◽  
pp. 71-77
Author(s):  
I. Sule

In determining the correct operation of relays of a protection scheme, proper representation of instrument transformers and their behavior in conditions where there can be saturation, is very critical. The main objective of this paper is to develop simulation model for assessing the operational performance of Current Transformer (CT). In order to test the validity of the developed model, three cases of CT operational conditions were considered, with data collected from Gombe, 330/132/33kV PHCN substation. The simulation results revealed various configuration performance responses that could affect relay protective schemes to different degrees. The CT responses revealed that the secondary current and voltage were distorted when the core flux linkages exceeded the set 9.2 pu saturation limit. It is concluded that the model developed for the CT of interest yield satisfactory results.


2020 ◽  
Vol 22 (1-2) ◽  
pp. 112-118
Author(s):  
Nenad Belčević ◽  
◽  
Zoran Stojanović

The main function of current transformers is to adapt the high values of the primary current to values suitable for the operation of relay protection devices, i.e. measuring devices. Under normal conditions, a current transformer transforms the current in a virtually permanent ratio, and practically without a phase shift, so the secondary current is actually a scaled value of the primary current. However, when a fault occurs in the power system, currents reach high values. As a result, the flux in the core of the current transformer can reach values above the knee of the magnetization characteristic, causing saturation of the current transformer. When saturation occurs, the secondary current is no longer a scaled value of the primary current, but is deformed. Deformation of the secondary current may cause malfunctioning of some relay protection devices. The development of digital relay protection has made it possible to perform software saturation compensation by applying certain algorithms, thus eliminating the negative consequences that saturation of the current transformer causes. In this paper, one of the possible approaches for compensation of saturation is analyzed, which is based on the application of an equivalent scheme and magnetization curve of the current transformer. Two typical approaches have been singled out, which have been analyzed and tested in more detail. Testing was performed in the MATLAB/Simulink.


2015 ◽  
Vol 793 ◽  
pp. 182-186
Author(s):  
Indra Nisja ◽  
M.H. Idris ◽  
M. Syafrudin ◽  
S. Hardi ◽  
M. Isa

This paper aims to analyzing and probing the influences of power system harmonics on a differential relay used for distribution transformer protection. The increased use of nonlinear devices in industry, commercial and residential areas can lead to a significant increase the level of harmonic distortion in the power system. This harmonic has the significant effects to the differential protection systems components such as current transformer (CT) and relay. The CT tends to saturate due to the presence of current harmonics in power system, so it will produce magnitude secondary current error and make the differential relay to miss operations. The harmonic distortion effects on the differential protection have been investigated through laboratory test. To determine the CT errors when operates under harmonic condition, the CT has been test with certain level of THDi. The result of this testing was found that with increasing of the THDi, the magnitude of secondary current error increased and differential relay will operate at no fault conditions.


Author(s):  
Yu. V. Rumiantsev ◽  
F. A. Romaniuk ◽  
V. Yu. Rumiantsev ◽  
I. V. Novash

The development and implementation of a digital current measurement element for proper operation during current transformer (CT) magnetic core severe saturation are considered. CT transient performance is often accompanied by primary current transformation to secondary one with great errors. In this case the secondary CT current which is an input signal of the digital measurement element differs from the ideally transformed CT current both in shape and magnitude. This causes impermissible signal settling time at the standard digital measurement element output. As a result, main requirements to the protection devices such as reliability and fast operation are violated, that in some cases makes the high-speed protection device ineffective. To solve this problem, it is proposed to form the output signal of the digital current measurement element in depending on the input signal total harmonic distortion (THD) coefficient value. Moreover, it is worthwhile to form the output signal so that for a low CT saturation conditions this output signal slightly differs from the secondary current RMS value, and for a severe CT saturation conditions it exceeds this value. Digital current measurement element model has been developed and implemented in the MatLab-Simulink environment using the following blocks: a digital filter block responsible for the input signal fundamental frequency component magnitude calculation; a digital filter block responsible for the input signal RMS value calculation; and, also, a standard blocks for basic mathematical calculations needed for proper functioning of the proposed measurement element. The functional testing of the proposed digital current measurement element model was carried out using the signal, that was similar in form to the waveform of the secondary current of the severe saturated CT. The tests that had been performed confirmed that the proposed digital current measurement element in comparison with the standard current measurement element ensures stable functioning and enhanced operation time during transients.


Author(s):  
F. A. Romaniuk ◽  
V. Yu. Rumiantsev ◽  
Yu. V. Rumiantsev ◽  
V. S. Kachenya

The use of orthogonal components (OS) is the main direction of determining information parameters in microprocessor relay protection and automation of electric power systems. Most of the measuring devices used in modern protection and automation devices can be implemented using known operating systems. Digital non-recursive frequency filters based on discrete Fourier transform are used for OS selection. The main disadvantage of these filters is their low performance that exceeds the period of industrial frequency. For the construction of high-speed measuring devices, this time of establishing the true output signal is often unacceptable. The article proposes to form the equivalent signal OS in microprocessor defenses based on the values of the cosine and sine axes of the main harmonic formed using a discrete Fourier transform, by multiplying them by a correction factor, which is a function of the values of the input signal amplitude and its main harmonic. The proposed algorithm for generating OS input signals in microprocessor defenses is characterized by high performance in transient modes and has wide functionality. A block diagram of an OS equivalent signal generator has been developed, all blocks of which can be implemented according to known schemes on a microelectronic and microprocessor element base. The OS shaper model is implemented in the MatLab-Simulink dynamic modeling environment. The model functioning was checked using two types of test actions, viz. a sinusoidal signal with a frequency of 50 Hz (idealized action) and a signal close to the real secondary current of a short-circuit current transformer. As a result of the performed calculations, a significant (up to two times) in the speed of the proposed method of OS formation in comparison with the formers based on the discrete Fourier transform, frequency properties of both formers being identical.


Sign in / Sign up

Export Citation Format

Share Document