Wide-angle, high-resolution three-dimensional (3D) imaging using non-mechanical beam steering

Author(s):  
Christopher L. Hoy ◽  
Jay Stockley ◽  
Kelly Kluttz ◽  
Doug McKnight ◽  
Lance Hosting ◽  
...  
2021 ◽  
Author(s):  
Thomas Littleford ◽  
Anthony Battistel ◽  
Greer Simpson ◽  
Kacper Wardynski

Abstract An advanced high-resolution acoustic imaging technology was deployed for well integrity and deformation assessments in both vertical and horizontal wells. This high frequency acoustic tool collected three-dimensional data quantifying deformation and wall thickness with resolution unobtainable by existing multi-finger caliper, magnetic flux leakage, and rotating single element ultrasonic systems. Several novel imaging methods are enabled by the high number of transducers (up to 512) on the imaging probe. These methods, including beam forming, beam steering and semi-stochastic multipulse imaging, are outlined and discussed in this paper. In addition, multiple types of standardized visualizations enabled by this high-resolution 3D data capture tool are introduced and examples of each are shown. Lab qualification and imagery generated by the high-resolution solid-state imaging technology, when applied to various precision machined geometric anomalies, are presented. In addition to lab validation results, several field studies are showcased including assessments of ovalized casing, complex downhole corrosion, and isolated minor pitting. Leak paths, splits, and damaged regions within threaded casing collars were also identified, imaged, and quantified using the acoustic technology. Until now, these collar regions have been very difficult to image using legacy downhole tools due to fundamental limitations at the threaded connection geometry. Lastly, various downhole completion equipment case studies are presented showcasing several applications of acoustic imaging used to validate the set-position or condition of specialty downhole equipment. This paper outlines the usage of the solid-state acoustic technology to generate three dimensional geometry and wall thickness datasets with sub-millimetric resolution, providing operators with a holistic and actionable assessment of their well integrity.


Author(s):  
Eric Lifshin ◽  
James Evertsen ◽  
Edward Principe ◽  
John Friel

Abstract Increased insight into the internal structure of microelectronic devices can be achieved through the use of three dimensional (3D) imaging based on image stacks of serial sections obtained with a combined electron and ion beam (CrossBeam) FIB. This study describes how such data can be collected and presented, some of the factors that need to be optimized to get the best images, and the limitations of the method. It can be viewed as a first step in the emerging area of high resolution 3D microscopy, a technique that can lead to more accurate characterization of the shapes of internal structures and their interconnectivity at the nanoscale.


2018 ◽  
Author(s):  
Zoltan Metlagel ◽  
Jocelyn F Krey ◽  
Junha Song ◽  
Mark F Swift ◽  
William J Tivol ◽  
...  

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Author(s):  
Claire Walsh ◽  
Natalie Holroyd ◽  
Eoin Finnerty ◽  
Sean G. Ryan ◽  
Paul W. Sweeney ◽  
...  

AbstractThree-dimensional microscopy of large biological samples (>0.5 cm3) is transforming biological research. Many existing techniques require trade-offs between image resolution and sample size, require clearing or use optical sectioning. These factors complicate the implementation of large volume 3D imaging. Here we present Multi-fluorescent High Resolution Episcopic Microscopy (MF-HREM) which allows 3D imaging of large samples without the need for clearing or optical sectioning.MF-HREM uses serial-sectioning and block-facing wide-field fluorescence, without the need for tissue clearing or optical sectioning. We detail developments in sample processing including stain penetration, resin embedding and imaging. In addition, we describe image post-processing methods needed to segment and further quantify these data. Finally, we demonstrate the wide applicability of MF-HREM by: 1) quantifying adult mouse glomeruli. 2) identifying injected cells and vascular networks in tumour xenograft models; 3) quantifying vascular networks and white matter track orientation in mouse brain.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document